• Title/Summary/Keyword: Organic electroluminescent devices

Search Result 138, Processing Time 0.026 seconds

The Optical and Electrical Properties of Vacuum-Deposited Thin Films using Europium Complex [Eu(TTA)$_3$(phen)]

  • 이명호;김영관;이한성;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.53-56
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays, where they are attractive because of their capability of multicolor emission, and low operation voltage. In this study, glass substrate/ITO/Eu(TTA)$_3$(Phen)/Al(A), glass substrate/ITO/TPD/Eu(TTA)$_3$(p-hen)/Al(B) and glass substrate/ITO/TPD/Eu(TTA)$_3$(phen)/AlQ$_3$/Al(C) structures were fabricated by vacuum evaporation method. where aromatic diamine(TPD) was used as a hole transporting material, Eu(TTA)$_3$(phen) as an emitting material. and tris(8-hydroxyquinoline)Aluminum(AlQ$_3$) as an electron transporting layer. Electroluminescent(EL) and I-V characteristics of Eu(TTA)$_3$(Phen) with a various thickness were investigated. This structure shows the red EL spectrum, which is almost the same as the PL spectrum of Eu(TTA)$_3$(phen). I-V characteristics of this structure show that turn-on voltage was 9V and current density was 0.01A/$\textrm{cm}^2$ at a dc operation voltage of 9V. Electrical transporting phenomena of these structures was explained using the trapped- charge-limited current model with I-V characteristics.

  • PDF

Studies on The Optical and Electrical Properties if Europium Complexes with Monolayer and Multilayer (Europium complexes 단층과 다층 구조 박막의 전기적ㆍ광학적 특성에 관한 연구)

  • 이명호;표상우;이한성;김영관;김정수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.871-877
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays, where they are attractive because of their capability of multicolor emission, and low operation voltage. In this study, glass substrate/ITO/Eu(TTA)$_3$(phen)/Al, glass substrate/ITO/Eu(TTA)$_3$(phen)/Al and glass substrate/ITO/Eu(TTA)$_3$(phen)/AlQ$_3$/Al structures were fabricated by vacuum evaporation method, where aromatic diamine(TPD) was used as a hole transporting material, Eu(TTA)$_3$(phen) as an emitting material, and Tris(8-hydroxyquinoline) aluminu-m(AlQ$_3$) as an electron transporting layer. Electrolumescent(EL) and I-V characteristics of Eu(TTA)$_3$-(-phen) were investigated. These structures show the red EL spectra, which are almost the same at the PL spectrum of Eu(TTA)$_3$(phen). I-V characteristics of this structure show that turn-on voltage was 9V and current density was 0.01A/㎤ at a operation voltage of 9V. Electrical transporting phenomena of these structures were explained using the trapped-charge-limited current model with I-V characteristics.

  • PDF

Studies on the Characteristics of Single-Layered Organic EL Device Using a Copolymer Having Hole and Electron Transporting Moieties (정공 및 전자 전달체의 기능기를 가진 공중합체를 사용한 단층형 유기 발광소자의 특성에 관한 연구)

  • 이창호;김승욱;오세용
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.543-550
    • /
    • 2002
  • We have synthesized a novel carrier transporting copolymer having triphenylamine moiety as a hole transporting unit and triazine moiety as an electron transporting unit in the polymer side chain. Single-layered organic electroluminescent (EL) devices consisted of ITO/copolymer and emitting materials (DCM, coumarin 6, DPvBi)/Al exhibited maximum external quantum efficiency when the ratio of hole transporting unit and electron transporting unit is 6:4 and the content of emitting material is 30 wt%. Especially, the devices emitted the light of red (620 nm), green (520 nm) and blue (450 nm) corresponding to the emitting materials, respectively. A maximum luminance of ITO/copolymer (6:4) and DCM (30 wt%)/Al EL device was about 500 cd/$m^2$ at a DC drive voltage of 12V.

Treatments of Electron Transport Layer in the Fabrication of High Luminous Green Phosphoresent OLED (고휘도 녹색 인광 OLED 제작에서 전자수송층 처리)

  • Jang, Ji-Geun;Kim, Won-Ki;Shin, Sang-Baie;Shin, Hyun-Kwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.5-9
    • /
    • 2008
  • New devices with structure of ITO/2TNATA/NPB/TCTA/CBP:7%Ir(ppy)$_3$/BCP/ETL/LiF/Al were proposed to develop high luminous green phosphorescent organic light emitting diodes and their electroluminescent properties were evaluated. The experimental devices were divided into two kinds according to the material ($Alq_3$ or SFC137) used as an electron transport layer (ETL). Luminous intensities of the devices using $Alq_3$ and SFC137 as electron transport layers were 27,500 cd/$m^2$ and 51,500 cd/$m^2$ at an applied voltage of 9V, respectively. The current efficiencies of both devices were similar as 12.6 cd/A under a luminance of 10,000 cd/$m^2$, while showed slower decay in the device with SFC137 as an ETL according to the further increase of luminance. Current density and luminance of the device with SFC137 as an electron transport layer were higher at the same voltage than those of the device with $Alq_3$ as an ETL.

  • PDF

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • Baek, Chung-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF

Design and Implementation of Polymer-Light Emitting Diodes by using Nanocantact Printing (나노접촉 인쇄공정을 이용한 폴리머 유기정보표시소자 설계 및 구현)

  • Jo Jeong-Dai;Kim Kwang-Young;Lee Eung-Sug;Choi Byung-Oh
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1511-1513
    • /
    • 2005
  • The polymer-light emtting diodes(PLEDs) were comprised a design of OLED array, process develop by using ITO thin glass, and fabrication of PDMS stamp by using nanocontact printing. In the study, we describe a different approach for building OLEDs, which is based on physical lamination of thin metal electrodes supported by a PDMS stamp layer against an electroluminescent organic. We develop that devices fabricated in this manner have better performance than those constructed with standard processing techniques. The lamination approach avoids forms of disruption that can be introduced at the electrode organic interface by metal evaporation and has a reduced sensitivity to pinhole or partial pinhole defects. Also, it is easy to build patterned PLED with feature sizes into the nanometer regime. This method provides a new route to PLED for applications ranging from high performance displays to storage and lithography systems, and PLED can used for organic electronics and flexible display.

  • PDF

The Spacer Thickness Effects on the Electroluminescent Characteristics of Hybrid White Organic Light-emitting Diodes

  • Seo, Ji-Hoon;Park, Jung-Sun;Seo, Bo-Min;Kim, Young-Kwan;Lee, Kum-Hee;Yoon, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.208-211
    • /
    • 2009
  • The authors have demonstrated the various characteristics of hybrid white organic light-emitting diodes (HWOLED) using fluorescent blue and phosphorescent red emitters. We also demonstrated that two devices showed different characteristics in accordance with thickness of the 4,4′-N,N′-dicarbazole-biphenyl (CBP) spacer (CS) inserted between the blue and the red emitting layer. It was found that the device with a CS thickness of 70 $\AA$ showed a current efficiency 2.5 times higher than that of the control device with a CS thickness of 30 $\AA$ by preventing the triplet Dexter energy transfer from the red to the blue emitting layer. The HWOLED with the CS thickness of 70 $\AA$ exhibited a maximum luminance of 24500 cd/$m^2$, a maximum current efficiency of 42.9 cd/A, a power efficiency of 37.5 lm/W, and Commission Internationale de I'Eclairage coordinates of (0.37, 0.42).

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

NiOx-based hole injection layer for organic light-emitting diodes (유기발광소자에 적용 가능한 NiOx 기반의 정공주입층 연구)

  • Kim, Junmo;Gim, Yejin;Lee, Wonho;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.309-313
    • /
    • 2021
  • Organic semiconductors have received tremendous attention for their research because of their tunable electrical and optical properties that can be achieved by changing their molecular structure. However, organic materials are inherently unstable in the presence of oxygen and moisture. Therefore, it is necessary to develop moisture and air stable semiconducting materials that can replace conventional organic semiconductors. In this study, we developed a NiOx thin film through a solution process. The electrical characteristics of the NiOx thin film, depending on the thermal annealing temperature and UV-ozone treatment, were determined by applying them to the hole injection layer of an organic light-emitting diode. A high annealing temperature of 500 ℃ and UV-ozone treatment enhanced the conductivity of the NiOx thin films. The optimized NiOx exhibited beneficial hole injection properties comparable those of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN), a conventional organic hole injection layer. As a result, both devices exhibited similar power efficiencies and the comparable electroluminescent spectra. We believe that NiOx could be a potential solution which can provide robustness to conventional organic semiconductors.

2-Wavelength Organic Light-Emitting Diodes by selectively doping of RP-411 in the Host of $Bebq_2$ ($Bebq_2$ 호스트에 RP-411을 선택 도핑한 2-파장 유기발광 다이오드)

  • Kim, Min-Young;Jang, Ji-Geun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.23-26
    • /
    • 2011
  • New organic light-emitting diodes with structure of ITO/DNTPD/TAPC/$Bebq_2/Bebq_2$:RP-411/ET-137/LiF/Al using the selective doping of 5% RP-411 in a single $Bebq_2$ host in the two wavelength(green, red) emitter formation were proposed and characterized. In the experiments, with a 300${\AA}$-thick undoped emitter of $Bebq_2$, three kinds of devices with different thicknesses of 30${\AA}$, 40${\AA}$ and 50${\AA}$ in the doped emitter of $Bebq_2$:RP-411 were fabricated. The electroluminescent spectra showed two peak emissions at the same wavelengths of 511 nm and 622 nm for the fabricated devices. When the device with a 30${\AA}$-thick doped emitter is referred as "D-1", the device with a 40${\AA}$-thick doped emitter is referred as "D-2" and the device with a 50${\AA}$-thick doped emitter is referred as "D-3", the relative intensity of 622 nm to 511 nm at two wavelength peaks was higher in the D-2 and the D-3 than in the D-1. The devices of D-1, D-2 and D-3 showed the color coordinates of (0.43, 0.46), (0.46, 0.44) and (0.48, 0.43) on the CIE chart, respectively.