• 제목/요약/키워드: Organic electroluminescent

검색결과 198건 처리시간 0.025초

유기박막의 Electroluminescent(EL) 특성 (Electroluminescent Characteristics of Organic Thin Film)

  • 문종대
    • 전기학회논문지
    • /
    • 제57권1호
    • /
    • pp.88-91
    • /
    • 2008
  • Electroluminescent(EL) devices based on organic thin films are considered to be one of the next generation of flat-panel displays. In this paper, we have investigated electro-luminescent(EL) characteristics of organic EL device using $Alq_3$, PBD as emitting material. Current and luminance can be seen that express a similar relativity in voltage and could know that luminance is expressing current relativity.

새로운 발광물질인 PRL-401, 403을 사용한 EL소자의 특성분석 (The characteristics of the electroluminescent devices using new organic materials, PRL-401, 403)

  • 김준호;이상필;이광섭;김영관;김정수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1742-1744
    • /
    • 2000
  • Organic materials have been considered for the fabrication of practical electroluminescent(EL) devices because a large number of organic materials are known to have extremely high fluorescence quantum efficiencies in the visible spectrum. In this study, electroluminescent devices are constructed using novel organic materials PRL-401, PRL-403 as the emitting elements. The devices have a triple-layer structure of organic thin films, prepared by vacuum vapor deposition. Greenish yellow electroluminescent emission is observed. The maximum luminances are over 1000 $cd/m^2$ and the turn-on voltages are about 13 V.

  • PDF

Electroluminescent Property of Tetrahydrochrysene as a Potential Emitting Layer in Organic Electroluminescent Device

  • Hwang, Kwan-Jin;Kim, Jin-Guk;Lee, Seung-Hee;Kwon, Oh-Kwan;Kim, Young-Kwan
    • Journal of Photoscience
    • /
    • 제7권2호
    • /
    • pp.59-61
    • /
    • 2000
  • As a potential electroluminescent material, tetrahydrochrysene (THC) is prepared using the dehydrocyclization following the acyloin condensation of methyl-3-phenyl propionate as key step from trans-mehyl cinnamate in 3 steps. THC showed emission at 428 and 456 nm after the photo- and electro-excitation, respectively. The luminance of THC doped on PVK was about /$25 cdm^2$ at 30 voltage with 70 nm of thickness. The results suggests that a new fluorescent organic dye, THC can be used organic electroluminescent device.

  • PDF

Present Status and Future Prospective of Organic EL

  • Tsutsui, Tetsuo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2000년도 제1회 신소재 심포지엄(차세대 광소재 심포지엄)
    • /
    • pp.53-76
    • /
    • 2000
  • Multi-color organic electroluminescent (EL) displays have already been commercialized, and the simple extensions of present technologies on organic EL can not be a target for basic research anymore. Future prospect of research on organic electroluminescent devices are described from the view point of possible future break-through. Three aspects, perspective for further increase of device efficiencies, possibility of simplified device structures and possible use of thick organic layers, are discussed.

  • PDF

유기 박막의 EL특성 (Electroluminescent Characteristics of Organic Thin Films)

  • 송진원;최용성;이경섭
    • 한국전기전자재료학회논문지
    • /
    • 제20권2호
    • /
    • pp.178-182
    • /
    • 2007
  • Electroluminescent (EL) devices based on organic thin films are considered to be one of the next generation of flat-panel displays. In this paper, we have investigated electro-luminescent (EL) characteristics of organic EL device using $Alq_{3}$, PBD as emitting material. Current and luminance can be seen that express a similar relativity in voltage and could know that luminance is expressing current relativity.

다층구조를 적용한 백색 전계발광소자의 발광효율 향상 (Enhancement of Emission Efficiency of Multilayer White Light Organic Electroluminescent Device)

  • 김주승;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 센서 박막재료
    • /
    • pp.27-31
    • /
    • 2001
  • We fabricated organic electroluminescent(EL) devices with mixed emitting layer of poly(N-vinylcarbazole)(PVK), 2,5-bis(5'-tert-butyl-2-benzoxazoly)thiophene(BBOT), N,N'-diphenyl-N,N'-(3-methyphenyl)-1,1'-biphenyl-4, 4'-diarnine(TPD) and poly(3-hexylthiophene)(P3HT). To improve the external quantum efficiency of EL devices, we added the functional layer to the devices such as LiF insulating layer, carrier confinement layer(BBOT) and hole injection layer(CuPc). In the ITO/emitting layer/Al device, the maximum quantum efficiency at 15V was $1.88{\times}10^{-5}%$. And then, it is increased by a factor of 27 to $5.2{\times}10^{-3}%$ in ITO/CuPc/emitting layer/BBOT/LiF/Al device at 15V.

  • PDF

Electroluminescence Characteristics of Novel Phenylamine Derivatives for Organic Electroluminescent Devices

  • Park, Su-Mi;Yun, Je-Jung;Oh, Gwang-Chae;Son, Sung-Hee;Han, Eun-Mi;Kim, Sung-Hoon;Jin, Sung-Ho;Moon, Ju-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.740-742
    • /
    • 2002
  • We reported the optical and electrical characteristics of organic electroluminescent phenylamine derivatives. The maximum EL peak of organic electroluminescent devices(OELDs) with PDV-DMI and PDV-AQ are at 615nm and at 592nm which are corresponding to red and orange emission, respectively.

  • PDF

White-Light-Emitting Materials for Organic Electroluminescent Devices

  • Kim, Duck-Young;Kwon, Oh-Kwan;Kwon, Hyuck-Joo;Kim, Young-Kwan;Sohn, Byoung-Chung;Ha, Yun-Kyoung
    • 한국응용과학기술학회지
    • /
    • 제18권1호
    • /
    • pp.7-11
    • /
    • 2001
  • White emission is important for applying organic EL devices to full-color flat panel display and backlight for liquid crystal display. In order to obtain white emission, the use of a light-emitting material which shows the white emission by itself is advantageous for these applications because of its high reliability and productivity. A chelate-metal complex such as zinc bis(2-(2-hydroxyphenyl) benzothiazolate) ($Zn(BTZ)_{2}$ was known to emit white light with a broad electroluminescence. In this study, the electroluminescent characteristics of $Be(BTZ)_{2}$ and $Mg(BTZ)_{2}$, as well as $Zn(BTS)_2$ were investigated using organic electroluminescent devices with the structure of ITO/TPD/ $Be(BTZ)_{2}$, $Mg(BTZ)_{2}$, or $Zn(BTZ)_{2}/Al$. It was found that the device containing $Be(BTZ)_{2}$ showed the highest power efficiency.

A Study on Highly Efficient Organic Electroluminescent Devices

  • Park, Jae-Hoon;Lee, Yong-Soo;Choi, Jong-Sun
    • Journal of Information Display
    • /
    • 제4권2호
    • /
    • pp.19-24
    • /
    • 2003
  • In order to improve the device performances of organic electroluminescent devices (OELDs), the efficiency of carrier injections into the organic layers from electrodes and the balance of injected carrier densities in the emission region are critical factors. Especially, energy barriers, which exist at the interfaces between electrodes and organic layers, interrupt carrier injections, which lead to unbalanced carrier densities. In this study, ${\alpha}-septithiophene$ (${\alpha}$-7T), as a buffer layer, and composite cathode composed of Al and CsF were formed to improve hole and electron injections, respectively. The orientations of ${\alpha}$-7T molecules were adjusted using the simple rubbing method and the mass ratio of CsF was varied from 1 to 10 wt%. Upon investigation of we believe that the 3 wt% mass ratio of CsF and the horizontal orientation of ${\alpha}$-7T molecules are the optimized conditions for achieving better the performance of OELDs. Device with the horizontally oriented 20 nm thick ${\alpha}$-7T layer and composite cathode shows a turn-on voltage of 7V and luminance of 172 cd/$m^2$ at 4 mA/$cm^2$.

저분자 화합물을 이용한 유기 전계발광소자의 제작과 특성 연구 (Preparation and Properties of Organic Electroluminescent Devices Using Low Molecule Compounds)

  • 노준서;조중연;유정희;장영철;장호정
    • 마이크로전자및패키징학회지
    • /
    • 제10권1호
    • /
    • pp.1-5
    • /
    • 2003
  • 본 연구에서는 ITO (indium tin oxide)/glass 투명기판 위에 다층구조의 OELD (organic electroluminescent devices) 소자를 진공 열증착법으로 제작하였다. 발광층 재료로서 Alq$_3$(tris-(8-hydroxyquinoline)aluminum)물질을 사용하였고, 정공수송층으로는 TPD (triphenyl-diamine) 및 $\alpha-NPD$를 사용하였다. 정공주입층 재료로서 CuPc (Copper phthalocyanine)를 사용하였다. 또한 QD2(quinacridone2) 물질을 $Alq_3$ 발광층내에 약 $10\AA$ 두께로 증착하여 발광효율 향상을 시도하였다. 제작된 모든 소자의 발광개시전압은 약 7 V 이었으며, 정공수송층으로 TPD 물질대신에 열적안정성이 우수한 $\alpha-NPD$를 사용한 경우 휘도값과 발광효율이 개선되었다. $Alq_3$ 발광층 사이에 QD2 물질을 적층한 소자에서 발광효율은 1.55 lm/W 값을 나타내어 $Alq_3$ 발광층만을 사용한 경우에 비해 약 8배 발광효율이 향상되었다.

  • PDF