• Title/Summary/Keyword: Organic dielectric

Search Result 411, Processing Time 0.044 seconds

Fabrication of Transparent Dielectric Green Sheet for Plasma Display Panel (PDP 투명유전체 형성용 Green Sheet 제조)

  • Heo, Sung-Cheol;Park, Duck-Kyun;Oh, Young-Jei
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.277-283
    • /
    • 2004
  • To fabricate green sheet of transparent dielectric for PDP front panel, dispersion of transparent dielectric slurry, density, and mechanical properties of green sheets have been investigated as a function of amount and composition of organic additives. Measurements of sedimentation and viscosity were employed to determine a proper dispersant and its amount for a well dispersed transparent dielectric powders in non-aqueous system. Green sheets, having various ratios of transparent dielectric powders to transparent dielectric powders+ binder+plasticizer and binder to binder+plasticizer, were fabricated. All the tape casting slurries showed shear thinning effect, that is, the apparent viscosity decreased with the increase of shear rate. It was found that the amount and composition of organic additives were main variables to affect densities and mechanical properties of transparent dielectric green sheets for PDP.

Tuning Electrical Performances of Organic Charge Modulated Field-Effect Transistors Using Semiconductor/Dielectric Interfacial Controls (유기반도체와 절연체 계면제어를 통한 유기전하변조 트랜지스터의 전기적 특성 향상 연구)

  • Park, Eunyoung;Oh, Seungtaek;Lee, Hwa Sung
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Here, the surface characteristics of the dielectric were controlled by introducing the self-assembled monolayers (SAMs) as the intermediate layers on the surface of the AlOx dielectric, and the electrical performances of the organic charge modulated transistor (OCMFET) were significantly improved. The organic intermediate layer was applied to control the surface energy of the AlOx gate dielectric acting as a capacitor plate between the control gate (CG) and the floating gate (FG). By applying the intermediate layers on the gate dielectric surface, and the field-effect mobility (μOCMFET) of the OCMFET devices could be efficiently controlled. We used the four kinds of SAM materials, octadecylphosphonic acid (ODPA), butylphosphonic acid (BPA), (3-bromopropyl)phosphonic acid (BPPA), and (3-aminopropyl)phosphonic acid (APPA), and each μOCMFET was measured at 0.73, 0.41, 0.34, and 0.15 cm2V-1s-1, respectively. The results could be suggested that the characteristics of each organic SAM intermediate layer, such as the length of the alkyl chain and the type of functionalized end-group, can control the electrical performances of OCMFET devices and be supported to find the optimized fabrication conditions, as an efficient sensing platform device.

Effects of dielectric capping layer in the phosphorescent top emitting organic light emitting diodes

  • Kim, Sei-Yong;Leem, Dong-Seok;Lee, Jae-Hyun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.499-502
    • /
    • 2008
  • Effects of a dielectric capping layer on the luminous characteristics of top emitting organic light emitting diodes (TOLEDs) have been analyzed using a classical electromagnetic theory. Special attention was given to the influence of the cavity length on the effectiveness of the capping layer. The luminance characteristics of the TOLEDs influenced by the combined effects of the cavity length and the capping layer thickness. Furthermore, these combined effects also modify the emission spectrum and pattern of the TOLEDs, which result in the improvement of total luminance of the device, but no significant change in the device out-coupling efficiency.

  • PDF

Air stable n-type organic field effect transistors using a perfluoropolymer insulator

  • Jang, Jun-Hyuk;Kim, Ji-Whan;Park, Noh-Hwal;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.276-279
    • /
    • 2008
  • Air stable n-type organic field effect transistors (OFETs) based on CB60B are realized using a perfluoropolymer as the gate dielectric layer. The devices showed the field-effect mobility of $0.05\;cm^2P/V\;s$ in ambient air. Replacing the gate dielectric material by $SiO_2$ resulted in no transistor action in ambient air. Perfluorinated gate dielectric layer reduces interface traps significantly for the n-type semiconductor even in ambient air.

  • PDF

Bias stress effect in organic thin-film transistors with cross-linked PVA gate dielectric and its reduction method using $SiO_2$ blocking layer

  • Park, Dong-Wook;Lee, Cheon-An;Jung, Keum-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.445-448
    • /
    • 2006
  • Bias stress effect in pentacene organic thin-flim transistors with cross-linked PVA gate dielectric is analyzed. For negative gate bias stress, positive threshold voltage shift is observed. The injected charges from the gate electrode to the defect states of gate dielectric are regarded as the main origin of $V_T$ shift. The reduced bias stress effect using $SiO_2$ blocking layer confirms the assumed mechanism. It is also demonstrated that the inverter with $SiO_2$ blocking layer shows the negligible hysteresis owing to the reduced bias stress effect.

  • PDF

Electrical Properties of Organic Materials as Low Dielectric Constant Materials

  • Oh Teresa;Kim Hong Bae;Kwon Hak Yong;Son Jae Gu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.3 s.12
    • /
    • pp.5-9
    • /
    • 2005
  • The bonding structure of organic materials such as fluorinated amorphous carbon films was classified into two types due to the chemical shifts. The electrical properties of fluorinated amorphous carbon films also showed very different effect of two types notwithstanding a very little difference. Fluorinated amorphous carbon films with the cross-link break-age structure existed large leakage current resulting from effect of the electron tunneling. Increasing the cation due to the electron-deficient group increased the barrier height of the films with the cross-link amorphous structure, therefore the electric characteristic of the final materials with low dielectric constant was also improved. The lowest dielectric constant is 2.3 at the sample with the cross-link amorphous structure.

  • PDF

Electrical Properties of Organic Materials as Low Dielectric Constant Materials

  • Oh Teresa;Kim Hong Bae;Kwon Hak Yong;Son Jae Gu
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.67-72
    • /
    • 2005
  • The bonding structure of organic materials such as fluorinated amorphous carbon films was classified into two types due to the chemical shifts. The electrical properties of fluorinated amorphous carbon films also showed very different effect of two types notwithstanding a very little difference. Fluorinated amorphous carbon films with the cross-link breakage structure existed large leakage current resulting from effect of the electron tunneling. Increasing the cation due to the electron-deficient group increased the barrier height of the films with the cross-link amorphous structure, therefore the electric characteristic of the final materials with low dielectric constant was also improved. The lowest dielectric constant is 2.3 at the sample with the cross-link amorphous structure.

  • PDF

Correlation between the dielectric constant and porosity due to the nano pore in the thin film (나노기공에 의한 박막 내의 기공율과 절연상수의 상관관계)

  • Oh, Teresa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.1-5
    • /
    • 2007
  • SiOC films were made using the oxygen and bistrimethylsilylmethane mixed precursor. The chemical properties of SiOC films divided into three properties, organic, hybrid and inorganic depending on the flow rate ratio between oxygen and bistrimethylsilylmethane precursor. The films with organic properties decreased dielectric constant, because of pore incorporation in final materials. In this study, the porosity of SiOC films with organic properties was investigated using the Makwell-Garnett equation. The porosity of the films could be correlated with the blue shift in the infrared spectra scopy, and increased with the decreasing the dielectric constant of the film.