• Title/Summary/Keyword: Organic core

Search Result 328, Processing Time 0.048 seconds

Plasma Treatment Effect of Organic/Organic Core-Shell Acrylic Adhesive Binder (II) (Organic/Organic Core-Shell 아크릴 접착바인더의 플라즈마 처리영향 (II))

  • Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • Adhesive binders with core-shell structure of organic/organic pair were prepared by emulsion polymerization of acrylic monomers, such as methyl methacrylate(MMA), ethyl acrylate(EA), n-butyl acrylate(BA), and styrene(St). Ammonium persulfate (APS) was used as an water soluble initiator in the presence of an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS). Non-woven fabric and leather were impregnated with the adhesive binder. The surface of the impregnated fabric and leather were treated with plasma technique and then kinetics analysis and mechanical properties were measured. The conversions of the polymerization of core-shell binder (MMA/EA, MMA/BA) were greater than 90%. When the core-shell binder was prepared at equimolar conditions, the increasing effect of the core-shell binder on the state peel strength of the impregnated and plasma-treated non-woven/non-woven fabric has the order of MMA/St, EA/BA, BA/MMA, EA/St, and EA/MMA. When the core-shell binder was prepared at non-equimolar conditions, the increasing effect of the core-shell binder on the state peel strength of the non-woven fabric/leather has the order of MMA/BA, BA/EA, MMA/EA, St/MMA, and EA/St.

Polymerization and Effect of Organic/Organic Core Shell Binder (Organic/organic Core Shell 바인더의 중합과 처리영향)

  • Sim, Dong-Hyun;Ban, Ji-Eun;Kim, Min-Sung;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.470-477
    • /
    • 2008
  • Core shell binder of organic/organic pair that has two different properties within a particle were prepared by a step emulsion polymerization of methacrylate (MMA), styrene (St), ethyl acrylate (EA), butyl acrylate (BA), and 2-HEMA by using an water soluble initiator(APS) in the presence of an anionic surfactant (SDBS). Unwoven tensile strength of the core shell binder after processing and measuring the PSt/PMMA/2-HEM core shell with the binder is a value represents the highest was $10.75\;kg_f$/2.5cm, elongation measurements PEA/PBA core shell binder showed the highest value was 120.00%. In conclusion, using the core shell binders were able to control the mechanical properties such as tensile strength and elongation.

Effects of Organic and Inorganic Binder Core on Microstructure and Mechanical Properties of Al Casting Products (알루미늄 주조품의 미세조직 및 기계적 특성에 미치는 유·무기 화합물 중자의 영향)

  • Shin, Sang-Soo;Kim, Woo-Chun;Kim, Eok-Soo;Lim, Kyoung-Mook;Park, Jeong-Wook
    • Journal of Korea Foundry Society
    • /
    • v.33 no.4
    • /
    • pp.147-156
    • /
    • 2013
  • The effects of core materials on the microstructure and mechanical properties of Al casting products have been investigated. The Al casting samples and cylinder head were fabricated by using organic and inorganic binder core respectively, and their microstructure and mechanical properties were evaluated. The Al casting samples fabricated by using inorganic core showed the better mechanical properties such as tensile strength and elongation than those of the Al casting samples fabricated by using organic core. That's because the Al casting samples contained small amount of pore defects and had fine microstructure compared with the Al casting samples fabricated by using organic core. Also, the use of inorganic core effectively reduced harmful gas emission and pollution.

Synthesis of Inorganic/Organic Core-Shell Polymer (무기/유기 Core-Shell 에멀젼 고분자의 합성)

  • Kim, Nam-Seok;Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.265-272
    • /
    • 2002
  • $CaCO_{3}$ absorbed sodium lauryl sulfate (SLS) surfactant was prepared, Core-shell polymers of inorganic/organic pair, which have both core and shell component, were synthesized by sequential emulsion polymerization using styrene(St) as a shell monomer and potasium persulfate (KPS) as an initiator, We found that when $CaCO_{3}$; core prepared by adding 2,0 wt% SLS, $CaCO_{3}$ core/PSt shell polymerization was carried out on the surface of $CaCO_{3}$ particle without forming the new PSt particle during St shell polymerization in the inorganic/organic core-shell polymer preparation, The structure of core-shell polymer were investigated by measuring the degree of decomposition of $CaCO_{3}$ using HCl solution, thermal decomposition of polymer composite using thermogravimetric analyzer and morphology by scanning electron microscope.

Manufacture of Core-Shell Composite Polymer Materials for Nonwoven binder (부직포 바인더용 Core-Shell 복합소재의 제조)

  • Lee, Sun Ryong;Lim, Jae Keel;Seul, Soo Duk
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.27-36
    • /
    • 2002
  • The organic/organic core-shell composite polymer for nonwomen binder were synthesized by stage polymerization of methyl methacrylate and styrene with ammonium persulfate after preparing monomer pre-emulsion in the presence of anionic surfactant. We study the effect of initiator concentration, $0.79{\times}10^{-3}{\sim}3.16{\times}10^{-3}mol/L$ for core polymer, $2.0{\times}10^{-4}{\sim}8.0{\times}10^{-4}mol/L$ for shell polymer, sulfactant concentration, $1.45{\times}10^{-5}{\sim}4.15{\times}10^{-5}mol/L$ for core polymer, $0.73{\times}10^{-5}{\sim}2.91{\times}10^{-5}mol/L$ for shell polymer on core-shell structure of polymethyl methacrylate/polystyrene and polystyrene/polymethyl methacrylate. Emulsion stability was major test method, particle size and particle size distribution were measured using particle size analyzer and the morphology of the core-shell composite polymer was determined using transmission electron microscope, glass temperature was also measured using differential scanning calorimeter.

  • PDF

A Study of Synthesis and Property of $CaCO_3$/Organic Core-Shell Particle (탄산칼슘 /유기계 Core-Shell 입자의 제조와 물성에 관한 연구)

  • Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.38-44
    • /
    • 2010
  • Core-shell particles of inorganic/organic pair were synthesized from $CaCO_3$ absorbed sodium dodecyl benzene sulfonate(SDBS) surfactant. Shell components were synthesized by sequential emulsion polymerization. Various monomers were used as shell components such as methyl methacrylate(MMA), ethyl acrylate(EA), butyl acrylate(BA), and styrene(St). Ammonium persulfate(APS) was used as an initiator and 2-ethylhexyl acylate(2-EHA) was used as a functional monomer, In the $CaCO_3$/organic core-shell particle polymerization, $CaCO_3$ absorbed surfactant SDBS of 0.5 wt% was prepared first and then core $CaCO_3$ was encapsulated by emulsion polymerization. 0.1 wt% of APS was added sequentially to minimize the formation of new monomer particle during shell polymerization. The structure of inorganic/organic core-shell particles were characterized by measuring the decomposition degree of $CaCO_3$ using HCl solution, thermogravimetric analyzer, scanning electron microscope, and transmission electron microscope.

A Study on the Environmental Fraternized Preparation of Inorganic/organic Core-shell Binder (환경친화적인 무기/유기 Core-Shell의 제조에 관한 연구)

  • Seoul, Soo-Duk;Lim, Jae-Keel;Lim, Jong-Min;Kwon, Jae-Beom;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 2004
  • Composite particles using inorganic and organic chemicals were synthesized and the results of those reaction were compared to variation of temperature and agitation speed in presence of $CaCO_3$ which was adsorbed SDBS. Also the synthesises were optimized according to conversion rate of composite particles. In inorganic/organic core-shell composite particle polymerization, $CaCO_3$ adsorbed by 0.5wt% surfactant SDBS was prepared initially and then core $CaCO_3$ was encapsulated by sequential emulsion polymerization using MMA at the addition of APS 3.16${\times}$$10^{-3}$mol/L to minimize the coagulated PMMA particle itself during MMA shell polymerization. Encapsulated PMMA on $CaCO_3$ as inorganic/organic core-shell particles was verified by FT-IR and DSC analysis. It was found that the $CaCO_3$ was very well encapsulated by PMMA as shell. The surfaces were distinctly found as spindle shape and broad particle distribution after capsulation.

Liquid crystal display utilizing bent-core liquid crystals: advantages and problems

  • Takezoe, Hideo;Gomola, Kinga;Guo, Lingfeng;Dhara, Surajit;Shimbo, Yoshio;Gorecka, Ewa;Pociecha, Damian;Mieczkowski, Jozef
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.8-9
    • /
    • 2009
  • After reviewing the principle of a new display utilizing bent-core liquid crystals, we summarize the advantages and problems of this display. Then we will introduce our effort to overcome these problems mostly by synthesizing new materials. We obtained a variety of newly synthesized compounds showing the $SmAP_R$ phase. Mixing was effective to decrease and widening the temperature range of the $SmAP_R$ phase.

  • PDF

Characterization of Organic Matter in Upper Jurassic Core Samples Drilled in Southern Germany (독일 남부지역에서 시추한 상부쥐라기 코어 시료의 유기물 특성 연구)

  • 박명호;김일수;이영주
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.429-436
    • /
    • 2002
  • Core samples, drilled in the middle region of Bavaria, were analyzed to study the characteristics of organic matter in the Upper Jurassic Solnhofen limestone of southern Germany. The core (48$^{\circ}$53'N, 1-1$^{\circ}$19'E) contains Upper Jurassic Solnhofen strata ranging from the upper part of the Geisental Formation throughout the Solnhofen Formation to the lower part of the Mornsheim Formation. In the core, the Upper Jurassic lithologies consist of platy limestone, bedded limestone and massive limestone often interbedded with some chert layers. Geochemical variations (Carbon, Nitrogen and Total Organic Carbon) and Rock-Eval pyrolysis parameters (S$_2$ peak and Hydrogen Index) indicate that the organic matter in the Upper Jurassic limestone is mostly of marine origin. Particularly, the relation-ship of Hydrogen Index and S$_2$ as a function of Total Organic Carbon suggests that the upper formation of the core (Mornsheim Formation) was more influenced by terrigenous influx than the Solnhofen and Geisental Formations.

The Effect of Anionic Surfactants in Synthesizing Silicone Dioxide/Acrylate Core-Shell Polymer (이산화규소/아크릴계 유기물의 코어-셀 합성에서 음이온 계면활성제의 영향)

  • Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.199-204
    • /
    • 2009
  • Silicone dioxide absorbed polyoxyethylene alkylether sulfate (EU-S133D) surfactant was prepared. Core-shell polymers of inorganic/organic pair, which have both core and shell component, were synthesized by sequential emulsion polymerization using Acrylate as a shell monomer and potassium persulfate (KPS) as an initiator. We found that when Acrylate core prepared by adding 2.0 wt% EU-S133D, silicone dioxide/Acrylate core-shell polymerization was carried out on the surface of silicone dioxide particle without forming the new silicone dioxide particle during acrylate shell polymerization in the inorganic/organic core-shell polymer preparation. The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by scanning electron microscope(SEM).