• Title/Summary/Keyword: Organic cation uptake

Search Result 32, Processing Time 0.026 seconds

Effects of Green Manure Crops on Red-pepper Yields and Soil Physico-chemical Properties in the Vinyl House (시설재배지 녹비작물 재배가 고추의 수량과 토양 이화학성에 미치는 영향)

  • Yang, Seung-Koo;Seo, Youn-Won;Lee, You-Seok;Kim, Hyun-Woo;Ma, Kyung-Cheel;Lim, Kyeong-Ho;Kim, Hong-Jae;Kim, Jung-Guen;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.2
    • /
    • pp.215-228
    • /
    • 2011
  • To establish the organic cultivation of pepper using green manure crops, this work studied the growth characteristics and yield of green manure crops, mineral composition of green manure crops, mineral uptake in shoots of green manure crops, chemical composition in soil of green manure crops, and the growth characteristics and yield of pepper in vinyl house. Shoot dry weight of green manure crops was higher level in Sorghum bicolor and Sorghum than in Crotalaria juncea and Glycine max. Also, the roots were spread deeply into soil in Sorghum bicolor and Sorghum. Density of root-knot nematodes in rhizosphere of green manure crops was significantly more decrease in Crotalaria juncea and Sorghum than in Glycine max and Sorghum bicolor. Total nitrogen and CaO content of green manure crops was significantly higher in Crotalaria juncea and Glycine max than in Sorghum bicolor and Sorghum. $K_2O$ content was significantly higher in Sorghum bicolor and Sorghum than in Crotalaria juncea and Glycine max. MgO content was not significant difference at all green manure crops. Cations content ratio of $K_2O$ : CaO : MgO was 3.4 : 1.4 : 1. Total nitrogen uptake in shoots of green manure crops was high level in Glycine max, Sorghum bicolor and Sorghum compared with in Crotalaria juncea. $K_2O$ and MgO uptake was significantly higher in Sorghum bicolor and Sorghum than in Crotalaria juncea and Glycine max. Value of pH in soil of green manure crops was more increase in Crotalaria juncea and Glycine max than in Sorghum bicolor, Sorghum and control, but after cultivation of pepper pH in soil was recovered with initial soil pH before seeding of green manure crops. EC value in control, green manure crops, and pepper cultivation decreased by 44%, 15~18%, and 38~61% level, respectively, compared with initial soil of green manure crops treatment. K content in soil of control, Crotalaria juncea and Glycine max cultivation was increased by 14%, but the K content in soil of Sorghum bicolor and Sorghum decreased by 24~38%. Cation exchange capacity (CEC) in soil of Crotalaria juncea and Sorghum bicolor decreased by 11%, but CEC in soil of Glycine max, Sorghum and control increased by 11%. Harvest fruit yield was higher in Crotalaria juncea, Glycine max, and Sorghum bicolor cultivation than in control and Sorghum.

Studies on the Effect of some Chemical Soil Components in relation to Rice Yield in Heavy Textured Paddy Soils developed on Alluvial Terrace (홍적대지에 발달된 중점질 논토양에서 벼 수량에 미치는 수종 화학성분의 영향에 관한 연구)

  • Ryu, In Soo;An, Sang Bae;Park, Chon Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.89-93
    • /
    • 1973
  • In order to study the effects of some chemical components of surface soils on the paddy yield in clayey Whadong series developed on old alluvium, NPK fertilizer experiments conducted from 1966 to 1969 were reviewed and discussed, and the results may be summarized as follows. 1. The paddy rice production of Whadong series without fertilizers varied from 156kg to 719kg per 10a. 2. The paddy yields in Whadong series were associated mainly with the contents of organic matter and available phosphorus in surface soils, but not with those of exchangeable K, Ca, and Mg and cation exchange capacity. 3. The contents of organic matter in these soils more effected in the paddy yield than those of phosphorus did. 4. In case less than 2.0% or more than 3.0% of organic matter in surface soils the effect of phosphate application was appreciable. The effect, however, was not recognized from 2.0 to 2.9% of organic matter. And the following suggestions were able to make. a. In case of less than 2.0% of organic matter, the effect was considered to be due to deficiency of available phosphorus in the soil. b. In case of more than 3.0% of organic matter, the greater effect was considered to be due to inhibition of P uptake even in higher P contents in soil. c. Consequently, correlation study of P testing in paddy soil should be limited to the soils which contains less than 2% of organic matter. d. If the contents of organic matter in paddy soils were above 3.0%, the effect of P application was considerable and considered to be due to inhibition of nutrient uptake. Accordingly, it is considered that only the increased application of P does not improve the production of paddy in such soils.

  • PDF

Influence of animal wastes on the soil fertility parameters and the growth of corn (Zea mays L.) (축산폐기물(畜産廢棄物)의 이용(利用)에 관(關)한 연구(硏究) : 가축분뇨(家畜糞尿)가 토양화학성(土壤化學性) 및 옥수수 생육(生育)에 미치는 영향(影響))

  • Kim, Jeong-Je;Hong, Byong-Ju;Goh, Yong-Gyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.137-143
    • /
    • 1991
  • This research was conducted to investigate the treatment effects of the experimental product of an oxidatively treated animal wastes such as feces of cow and pig on the growth and yield of corn, soil fertility parameters, nutrient uptake by corn, and in situ dry matter digestibility. The results are summarized as follows. (1) Growth of corn was favored by treatment of the experimental products as compared to the control. Highest yields were obtained at treatment levels of 2,000 and 2,500kg/10a for the experimental products derived from cow and pig feces, respectively. (2) The contents of soil organic matter were increased 7-41% and 4-60% with treatments of experimental products from cow and pig feces, respectively, as compared to the control. The available soil phosphorus levels were increased significantly with the treatments. Treatment of product from the cow feces resulted in a slight increase of the potassium adsorption ratio (KAR). (3) No significant difference was observed in uptake of total nitrogen and phosphorus between the treatments and the control. Uptake of cation by corn was in the order of $K_2O$ >CaO>MgO. (4) In situ dry matter digestibility ratio was increased with Incubation time. However, no significant difference in digestibility was detected for the corn samples produced by treating different levels of the experimental products.

  • PDF

Effects of Fermented Mixed Organic Fertilizer Utilizing By-Products on Soil Properties and the Yield of Organic Lettuce (부산물 활용 발효 유기질비료 처리에 따른 유기 상추 토양 특성 및 수량에 미치는 영향)

  • An, Nan-Hee;Lee, Sang-min;Hwang, Hyun-Young;Park, Sang-Gu;Lee, Cho-Rong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.41-48
    • /
    • 2021
  • This study aimed to develop an alternative organic fertilizer to castor oil cake-based fertilizers. To assess the nutrient effect of the developed fermented mixed organic fertilizers, the yield of lettuce and soil characteristics after growth were analyzed and compared to those of a trial using a mixed expeller cake fertilizer. Two fermented mixed organic fertilizers, FA and FB, each containing 5.0% nitrogen, 2.6% phosphate, and 1.4% potassium, were produced by mixing different ratios of rice bran, dried distillers grains, sesame oil meal, and fish meal. This study was conducted with six trials: untreated, mixed expeller cake fertilizer, and the fermented mixed organic fertilizers FA and FB. Based on the amount of nitrogen fertilization (70 kg ha-1) on the lettuce, the fermented mixed organic fertilizers FA and FB were applied at 100% and 150%, respectively, and the mixed oil cake was applied at 100%. As the amount of treatment increased, there was no significant difference except the number of leaves in FA treatment. The yields from the FA100 and FB100 treatments were 38.2 and 40.8 Mg ha-1, respectively, which was not significantly different from that of the mixed expeller cake fertilizer treatment at 38.3 Mg ha-1. In addition, the nitrogen uptake and utilization efficiency of the lettuce were not significantly different between mixed expeller cake fertilizer and fermented mixed organic fertilizer treatments. Analysis of the chemical properties of the soil after the trial showed that he mixed expeller cake fertilizer treatment showed the lowest pH. There were no significant differences in electrical conductivity, content of soil organic matter, available phosphate, and exchangeable cation among the fertilizer treatments. However, the bacterial and actinomyces density was higher in the soil from the fertilizer trials than in the non-fertilizer trials. These results indicated that the two tested fermented mixed organic fertilizers had nourishing effects and soil characteristics that were similar to those of the mixed expeller cake fertilizer. Thus, farmers can use these fermented mixed organic fertilizers as alternatives to castor oil cakes for the cultivation of organic lettuce.

Evaluation of metal contamination and phytoremediation potential of aquatic macrophytes of East Kolkata Wetlands, India

  • Khatun, Amina;Pal, Sandipan;Mukherjee, Aloke Kumar;Samanta, Palas;Mondal, Subinoy;Kole, Debraj;Chandra, Priyanka;Ghosh, Apurba Ratan
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.21.1-21.7
    • /
    • 2016
  • Objectives The present study analyzes metal contamination in sediment of the East Kolkata Wetlands, a Ramsar site, which is receiving a huge amount of domestic and industrial wastewater from surrounding areas. The subsequent uptake and accumulation of metals in different macrophytes are also examined in regard to their phytoremediation potential. Methods Metals like cadmium (Cd), copper (Cu), manganese (Mn), and lead (Pb) were estimated in sediment, water and different parts of the macrophytes Colocasia esculenta and Scirpus articulatus. Results The concentration of metals in sediment were, from highest to lowest, Mn ($205.0{\pm}65.5mg/kg$)>Cu ($29.9{\pm}10.2mg/kg$)>Pb ($22.7{\pm}10.3mg/kg$)>Cd ($3.7{\pm}2.2mg/kg$). The phytoaccumulation tendency of these metals showed similar trends in both native aquatic macrophyte species. The rate of accumulation of metals in roots was higher than in shoots. There were strong positive correlations (p <0.001) between soil organic carbon (OC) percentage and Mn (r =0.771), and sediment OC percentage and Pb (r=0.832). Cation exchange capacity (CEC) also showed a positive correlation (p <0.001) with Cu (r=0.721), Mn (r=0.713), and Pb (r=0.788), while correlations between sediment OC percentage and Cu (r=0.628), sediment OC percentage and Cd (r=0.559), and CEC and Cd (r=0.625) were significant at the p <0.05 level. Conclusions Bioaccumulation factor and translocation factors of these two plants revealed that S. articulatus was comparatively more efficient for phytoremediation, whereas phytostabilization potential was higher in C. esculenta.

Heavy Metal Uptake by Balloon Flower Together with Investigating Soil Properties and Heavy Metal Concentrations in the Cultivated Soils

  • Bae, Jun-Sik;Seo, Byoung-Hwan;Lee, Sin-Woo;Kim, Won-Il;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.172-178
    • /
    • 2014
  • Soil properties and heavy metal (HM) concentrations in the field soils where balloon flowers (Platycodon grandiflorum, BF) were cultivated, were investigated together with HM (Cd, Cu, Pb, and Zn) accumulation by the BF roots. Basically, in most soils examined (51-97% among 65 samples), the chemical properties including soil pH, organic matter, available-P, and exchangeable cation contents appeared to be lower than the optimal ranges for balloon flower cultivation. There were no samples exceeding the standard limits for HM in soils. Instead, the total HM concentration levels in soils appeared to be maintained at around background levels for general soil in Korea. This implied that elevated HM accumulation in the soils caused by any possible input sources was unlikely. Even though the BF cultivated soils were not contaminated by HM, it was appeared that substantial amount of Cd was accumulated in BF roots with 1.5% and 35% roots samples exceeding the standard limits legislated for BF root ($0.81mg\;kg^{-1}DW$) and herbal plants ($0.3mg\;kg^{-1}DW$), respectively. This implied that the soil HM standard limits based on the total concentration does not reflect well the metal accumulation by plants and also it is likely that the Cd standard limits for BF and herbal plants is too restrict.

Mechanism of Intestinal Transport of an Organic Cation, Tributylmethylammonium in Caco-2 Cell Monolayers

  • Hong Soon-Sun;Moon Sang-Cherl;Shim Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.318-322
    • /
    • 2006
  • Many quaternary ammonium salts are incompletely absorbed after their oral administration and may also be actively secreted into the intestine. However, the underlying mechanism(s) that control the transport of these cations across the intestinal epithelium is not well understood. In this study, the mechanism of absorption of quaternary ammonium salts was investigated using Caco-2 cell monolayers, a human colon carcinoma cell line. Tributylmethylammonium (TBuMA) was used as a model quaternary ammonium salts. When TBuMA was administrated at a dose of 13.3 imole/kg via iv and oral routes, the AUC values were $783.7{\pm}43.6\;and\;249.1{\pm}28.0{\mu}mole\;min/L$ for iv and oral administration, indicating a lower oral bioavailability of TBuMA $(35.6\%)$. The apparent permeability across Caco-2 monolayers from the basal to the apical side was 1.3 times (p<0.05) greater than that from the apical to the basal side, indicating a net secretion of TBuMA in the intestine. This secretion appeared to be responsible for the low oral bioavailability of the compound, probably mediated by p-gp (p-glycoprotein) located in the apical membrane. In addition, the uptake of TBuMA by the apical membrane showed a $Na^+$ dependency. Thus, TBuMA appears to absorbed via a $Na^+$ dependent carrier and is then secreted via p-gp related carriers.

Study of Iodide Adsorption on Organobentonite using X-ray Absorption Spectroscopy (X-선 흡수분광기를 이용한 유기벤토나이트의 요오드 흡착연구)

  • Yoon, Ji-Hae;Ha, Ju-Young;Hwang, Jin-Yeon;Hwang, Byoung-Hoon;Gordon E. Brown, Jr.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2009
  • The adsorption of iodide on untreated bentonite and bentonites modified with organic cation (i.e., hexadecylpyridinium chloride monohydrate ($HDP^+$)) was investigated, and the organobentonites were characterized using uptake measurements, ${\mu}$-XRD, and electrophoretic mobilities measurement. Uptake measurements indicate that bentonite has a high affinity for $HDP^+$. Our ${\mu}$-XRD study indicates that organobentonites significantly expanded in basal spacing and organic cations were substantially intercalated into the interlayer spaces of bentonite. The electrophoretic mobility indicates that organobentonite tht is modified with organic cations in excess of the CEC of bentonite is completely different from untreated bentonite in the surface charge distribution. We found significant differences in adsorption capacities of iodide depending on the bentonite properties as follows: iodide adsorption capacities were 439 mmol/kg for the bentonite modified with $HDP^+$ at an equivalent amount corresponding to 200% of the CEC of bentonite whereas no adsorption of iodide was observed for the untreated bentonite. The molecular environments of iodine adsorbed on organobentonites were further studied using I K-edge and $L_{III}$-edge x-ray absorption spectroscopy (XAS). The X-ray absorption near-edge structure (XANES) of iodine spectra from organobentonites was similar to that of KI reference solution. Linear combination fitting of EXAFS data suggests the fraction of iodine reacted with the organic compound increased with increasing loading of the organic compound on organobentonites. In this study, we observed significant differences in the adsorption environments of iodide depending on the modified property of bentonite and suggest that an organobentonite has potential as reactive barrier material around a nuclear waste repository containing anionic radioactive iodide.

Preparation and Properties of Sufonated High Impact Polystyrene(HIPS) Cation Exchange Membrane Via Sulfonation (술폰화 반응에 의한 High impact polystyrene(HIPS) 양이온교환막의 제조 및 특성)

  • Kim, Yong-Tae;Kwak, Noh-Seok;Lee, Choul-Ho;Jin, Chang-Soo;Hwang, Taek-Sung
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • In this study, ion exchange membranes were prepared using high impact polystyrene(HIPS) with various crosslinking and sulfonation time. Degree of sulfonation(DS) of sulfonated HIPS(SHIPS) membrane was increased with sulfonation time and decreased with crosslinking time. The highest value of DS was 66%. Also, water uptake and ion exchange capacity(IEC) of SHIPS membrane were decreased with degree of crosslinking and increased with sulfonation time. Then their values were 35.2% and 1.55 meq/g, respectively. Electrical resistance and ion conductivity of the membranes were showed more excellent value with sulfonation time. The maximum value of electrical resistance and ion conductivity were $0.4\Omega{\cdot}cm^{2}$ and 0.1 S/cm, respectively. It is indicated that the SHIPS membrane has the higher performance compare with Nafion 117. Durability of SHIPS membranes in a organic solvent was increased with increasing crosslinking time. The surface roughness of HIPS membranes were confirmed with SEM that was become uneven surface with progressing sulfonation.

Changes of Pepper Yield and Chemical Properties of Soil in the Application of Different Green Manure Crops and No-Tillage Organic Cultivation (무경운 유기재배에서 녹비작물별 고추의 수량과 토양 화학성 변화)

  • Yang, Seung-Koo;Seo, Youn-Won;Kim, Yong-Soon;Kim, Sun-Kook;Lim, Kyeong-Ho;Choi, Kyung-Ju;Lee, Jeong-Hyun;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.2
    • /
    • pp.255-272
    • /
    • 2011
  • This work studied the growth and yield of green crops, changes of mineral composition in greenhouse soil and green crops, and infection with wintering green crops cultivation in greenhouse field. At 74 days after seeding of wintering green crops, dry matter was 710kg/10a in rye, 530kg/10a in barley, 230kg/10a in hairy vetch, and 240kg/10a in bean or weeds. Total nitrogen content in green crops was 4.5% in pea and hairy vetch, and 3~4% in barley and rye. $P_2O_5$, CaO, and MgO contents in all green crops were about 1.0%, and $K_2O$ content was the highest level by 4~5% among macro elements. Total nitrogen fixing content in shoot green crops uptaken from soil was 22.1kg/10a in rye, 20.6kg/10a in barley, 10.6kg/10a in hairy vetch, and 9.6kg/10a in pea and giant chickweed. $P_2O_5$ fixing content in shoot green crops uptaken from soil was 8.4kg/10a in rye, 6.3kg/10a in barley, and 2.3 kg/10a in hairy vetch and pea. $K_2O$ fixing content in shoot green crops uptaken from soil was 28kg/10a in rye, 24.7kg/10a in barley, and 11kg/10a in hairy vetch and pea. CaO fixing content in shoot green crops uptaken from soil was 2~3kg/ 10a in all green crops, and MgO fixing content was 1.7~2.6kg/10a in all green crops. Pepper growth in no-tillage was not a significant difference at all green manure crops. The number of fruit and fruit weight were higher in control, pea, hairy vetch and harvest barley than rye and barley. Soil mineral compositions in wintering green crops increased at pH, organic matter, CEC compared with control. Soil chemical compositions were stable level at green crops cultivation according as decreases of EC, available phosphoric acid, Ca, and Mg contents. After no-tillage by green manure crops, pH in soils was higher in green manure crops than control. EC content in soils was lower in green manure crops than control, and was remarkably low level in barley harvest. Organic matter content in soils increased in hairy vetch and barley green manure but decreased by 35% in barley harvest. Total nitrogen and avaliable $P_2O_4$ content in soils remarkably increased but was not a significant difference at all green manure crops. Cation (K, Ca, and Mg) content in soils decreased by 15~20% in K, 2~11% in Ca, and 3~6% in Mg at rye, barley and pea compared with control.