• Title/Summary/Keyword: Organic ammonium salt

Search Result 43, Processing Time 0.022 seconds

Studies on the Chemical Analysis of the Tertiary Amine Salt and Quaternary Ammonium Salt by Tetrathiocyanatocobaltate[II] (3급 아민염 및 4급 암모늄염의 Tetrathiocyanatocobaltate[II]에 의한 분석화학적 연구)

  • 엄동옥;이윤중
    • YAKHAK HOEJI
    • /
    • v.24 no.3_4
    • /
    • pp.159-165
    • /
    • 1980
  • Tetrathiocyanatocobaltate[II] forms complexes with tertiary amine salts or quarternary ammonium salts which were extractable from aqueous solution by organic solvent. In order to study composition of the complex, the colored crystalline complexes produced were evaluated with elemental analysis, infrared and mass spectra. And also a novel spectrophotometric method for the determination of tertiary amine salt or quarternary ammonium salt with tetrathiocyanatocobaltate[II] was established by organic solvent extraction within coefficient of variation of 1.06-1.35%.

  • PDF

Synthesis and Shuttling Behavior of Rotaxanes Consisting of Crown Ether Wheel and Disulfide Dumbbell with Two Ammonium Centers

  • Furusho, Yoshio;Sanno, Ryoko;Oku, Tomoya;Takata, Toshikazu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1641-1644
    • /
    • 2004
  • Several [2]- and [3]rotaxanes bearing some functional groups on their wheel components and spacers with different lengths between two ammonium centers on their dumbbell components were prepared in good yields from dibenzo-24-crown-8-ether derivatives and dumbbell-shaped bis(sec-ammonium salt)s having a centrally located disulfide linkage, by utilizing the reversible thiol-disulfide interchange reaction. The shuttling behaviors of the [2]rotaxanes were investigated by $^1H$ NMR by use of the spin polarization transfer-selective inversion recovery technique. It was found that the change in spacer length in the axle resulted in a drastic change in shuttling rate of the [2]rotaxanes, although the introduction of the functional groups to the wheels did not affect the shuttling behavior at all.

A Study on The Antimicrobial Effect of Organic Silicon Quaternary Ammonium Salt Using Cotton, Polyester, and Wool (이불솜의 종류에 대한 유기실리콘 제4급 암모늄염의 항미생물성 효과 -목화솜, 폴리에스테르솜, 양모솜-)

  • 이은영
    • Journal of the Korean Home Economics Association
    • /
    • v.33 no.3
    • /
    • pp.243-253
    • /
    • 1995
  • This study has been carried out for the antimicrobial effects of organic silicon quaternary ammonium salt with which cotton, polyester, and wool were treated respectively, using Esherichia coli and Proteus bulgaris which are experimental bacteria for clothing materials. As a results, the best antimicrobial effects of organic silicon quaternary ammonium salt came out from cotton ; the next form wool ; and lower from polyester. With the changes of the temperature, the antimicrobial effect with soaking time, there was no changes with cotton after 10 minutes passed. It seemed to have reacted entirely in the early stage. The longer the soaking duration was, the higher the effect from polyester was. The effect from wool was increased until 20 minutes, but decreased after 30 minutes. The optimal processing condition of cotton was in the condition of liquor ratio 40:1, concentration 0.5%, soaking time 5 minutes, and temperature 3$0^{\circ}C$ ; wool was 1.5%, 20 minutes, and 6$0^{\circ}C$ ; polyester was 2.0%, 30 minutes, and 3$0^{\circ}C$ respectively. The changes of the effect by washing was as followings : The processing effect on cotton and wool appeared to be everlasting, since they had no changes by washing 10 times ; while, it was remarkablely decreased with polyester by washing only once, and was almost disappeared after washing 10 times, which means that polyester has no durability to washing.

  • PDF

Preparation and Characteristics of Maleated Polyethylene Modified with Poly(dimethylsiloxane) (Poly(dimethylsiloxane) 변성 Maleated Polyethylene의 제조와 그 특성)

  • Lee Byoung-Chul;Kang Doo-Whan
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.224-229
    • /
    • 2006
  • Quaternary ammonium salt terminated silane was prepared from aminopropyldimethylethoxysilane with methyliodide and ionized 7,7,8,8-tetracyanoquinodimethane $(Li^+TCNQ^-)$ was prepared from TCNQ with methyliodide and lithium iodide. Quaternary ammonium salt silane-TCNQ adduct (ST) was prepared by reacting quaternary ammonium salt terminated silane with $Li^+TCNQ^-$ solution. Poly (dimethylsiloxane)-ST adduct (PST) was prepared by condensation of $\alpha,\omega-hydroxyl$ group terminated poly (dimethylsiloxane) (PDMS) with ST. Maleated polyethylene modified with PDMS (PST-g-MPE) was prepared by melt polymerization of maleated PE and PST in internal mixer and PST-g-MPE/carbon black (CB) and MPE/CB composites were prepared by compounding PST with MPE and PST-g-MPE, respectively. The thermal and mechanical properties of the composites were measured and dispersion characteristics of CB in matrix rosins show that the dispersion of CB in PST-g-MPE/CB was better than that of MPE/CB composite.

Synthesis and $^{18}F$ Labelling of Organic Ammonium Salts to New Cardiac Flow Tracer for PET and Their Biodistribution (양전자단층촬영에 이용 가능한 새로운 심근 혈류 추적자 개발; F-18이 표지된 유기암모늄염의 합성과 체내분포에 관한 연구)

  • Yu, Kook-Hyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.3
    • /
    • pp.331-337
    • /
    • 1994
  • In order to develop a $^{18}F$-labelled myocardial perfusion agent(flow tracer) for PET, $^{18}F$-labelled organic ammonium cations were synthesized and evaluated in relation to their biodistribution. Five quaternary organic ammonium compounds were labelled with $^{18}F$ in a side chain with moderate to good yields by direct introduction of $^{18}F$-fluoride. Radiochemical yields have been achieved in 30-40min by the precursors (tosylates) in dimethylsulfoxide 15-60% (decay corrected). The reaction was found to be autocatalyzed. A remote controlled procedure was developed in these synthesis. $^{18}F$-Labelling and HPLC-purification of com-pounds needed about 60 min(Yield; 7-20%). Up to now the two compounds N-4-[$^{18}F$]fluorobutyl-pyridinium cation(1) and N, N dibenzyl-4(2-[$^{18}F$]fluoroethyl)piperidinium cation(2) were investigated in relation to their biodistribution in mice. Compound 1 showed at 1 min post injection the high uptake of 19.22% ID/g organ in the myocardium but a following fast decline to 1.12% ID/g organ after 40min. Uptake of compound 2 was after 1min in the heart 5.90% ID/g organ but after 40min at the relative high value of 4.33% ID/g organ. Heart:blood ratio for compound(1) at 1 min was 8.3, at 40 min 2.6 for compound II 2.0(1min) and 15.0(40 min). As data of compound 2 showed greater heart uptake, slower myocardial release, and higher heart: blood ratios, compound 2 is a good candidate for further evaluation.

  • PDF

Dephosphpoylation of P-Nitrophenyldiphenylphosphinate by Benzimidazole Catalyzed with Ethyl tri-n-octyl Ammonium Bromide(ETABr) (ETABr 용액내에서 P-Nitrophenyldiphenylphosphinate의 탈인산화반응에 미치는 Benzimidazole의 촉매효과)

  • Kim, Jeung-Bea;Kim, Hak-Yoon
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.641-647
    • /
    • 2007
  • The phase transfer catalysis(PTC) reagent, ethyl tri-octyl ammonium bromide(ETABr), strongly catalyzes the reaction of p-nitrophenyi diphenyl phosphinate(p-NPDPIN) with benzimidazole(BI) and its anion($BI^{\theta}$). In ETABr solutions, the dephosphorylation reactions exhibit higher first order kinetics with respect to the nucleophile, BI, and ETABr, suggesting that reactions are occuring in small aggregates of the three species including the sub-strate(p-NPDPIN), whereas the reaction of p-NPDPIN with $OH^{\theta}$ is not catalyzed by ETABr. This behavior for the drastic rate-enhancement of the dephosphorylation is referred as 'aggregation complex model' for reaction of hydrophobic organic phosphinates with benzimidazole(BI) in hydrophobic quarternary ammonium salt(ETABr) solutions.

Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials (Organic Clay가 첨가된 고분자 복합 전해질의 제조 및 전기화학적 성질)

  • Kim, Seok;Hwang, Eun-Ju;Lee, Jea-Rock;Kim, Hyung-Il;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2007
  • In this work, polymer/(layered silicate) nanocomposites (PLSN) based on poly (ethylene oxide) (PEO), ethylene carbonate (EC) as a plasticizer, lithium salt ($LiClO_4$), and sodium montmorillonite ($Na^+-MMT$) or organic montmorillonite (organic MMT) clay were fabricated. And the effects of organic MMT on the polymer matrix were investigated as a function of ionic conductivity. For the application to electrolytes an Li batteries, polymer electrolytes containing the organic nanoclays were used in this work. As a result, the spacing between layers and hydrophobicity of the organic nanoclays were increased, affecting on the exfoliation behaviors of the MMT layers in clay/PEO nanocomposites. From ion-conductivity results, the organic-MMT showed higher values than those of $Na^+-MMT$, and the MMT-20A sample that was treated by methyl dihydrogenated tallow ammonium, showed the highest conductivity in this system.

Reactions in Surfactant Solutions(V): Dephosphorylation of p-Nitrophenyldiphenylphosphinate by Benzimidazole Catalyzed with Ethyltri-n-octylammonium Bromide

  • 홍영석;이정근;김현묵
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1260-1264
    • /
    • 1997
  • The phase-transfer reagent (PTC), ethyl tri-n-octylammonium bromide (ETABr), strongly catalyzes the reaction of p-nitrophenyldiphenylphosphinate (p-NPDPIN) with benzimidazole (BI) and its anion (BI-). In ETABr solutions, the dephosphorylation reactions exhibit higer than first order kinetics with respect to the nucleophile, BI, and ETABr, suggesting that reactions are occuring in small aggregates of the three species including the substrate, whereas the reaction of p-NPDPIN with OH- is not catalyzed by ETABr. This behavior for the drastic rate-enhancement of the dephosphorylation is refered as 'aggregation complex model' for reactions of hydrophobic organic phosphinates with benzimidazole in hydrophobic quarternary ammonium salt solutions.

Ranking and comparison of draw solutes in a forward osmosis process

  • Sudeeptha, G.;Thalla, Arun Kumar
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.411-421
    • /
    • 2017
  • Forward osmosis (FO) is an emerging technology which can possibly make the desalination process more cost and energy efficient. One of the major factors impeding its growth is the lack of an appropriate draw solute. The present study deals with the identification of potential draw solutes, and rank them. The comparison was carried out among ten draw solutes on the basis of four main parameters namely; water flux, reverse salt diffusion, flux recovery and cost. Each draw solute was given three 24 hour runs; corresponding to three different concentrations; and their flux and reverse salt diffusion values were calculated. A fresh membrane was used every time except for the fourth time which was the flux recovery experiment conducted for the lowest concentration and the change of flux and reverse salt diffusion values from the initial run was noted. The organic solutes inspected were urea and tartaric acid which showed appreciable values in other parameters viz. reverse salt diffusion, flux recovery and cost although they generated a lower flux. They ranked 5th and 8th respectively. All the experimented draw solutes were ranked based on their values corresponding to each of the four main parameters chosen for comparison and Ammonium sulfate was found to be the best draw solute.

Removal of Organic and Nutrients in Fish Market Wastewater using Sequencing Batch Reactor (SBR) (SBR공정을 이용한 수산물 위판장 폐수에서 유기물 및 질소 제거)

  • Kim, Sung-Ju;Lee, Dae-Hee;Park, Hung-Suck
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • This research work aims at treating saline wastewater generated from a fish market using four Sequencing Batch Reactors (SBR) operated under different conditions. The effect of C/N ratio (3, 6) and salt concentration (0.5~2%) on organic and nitrogen removal was studied. The synthetic wastewater prepared with glucose ($C_6H_{12}O_6$) as the primary carbon source along with ammonium chloride ($NH_4Cl$) was used in the three reactors. The fill, anoxic, aeration, settle and draw conditions were 2 hr, 4 hr, 4 hr and 2 hr respectively. The fourth reactor was operated at different conditions to investigate the practical feasibility of SBR application to handle fish market wastewater generated in Ulsan city that had fluctuating loading characteristics. Though the unacclimated sludge was initially affected by the salt concentration, the acclimated sludge removed 95% of the organics irrespective of the NaCl concentration and C/N ratio. However, the removal of nitrogen was affected more by C/N ratio than the salt concentration. While handling fish market wastewater, though the organic and nitrogen loading rate were varying between $0.009{\sim}0.259gCOD_{OH}/gVSS/day$ and 0.005~0.034 gN/gVSS/day, the effluent concentrations were far less than the effluent standard of $120mgCOD_{OH}/L$ and 60 mgN/L respectively, except when loading rates were fluctuating and 4 times higher than the average.