• 제목/요약/키워드: Organic Vapor Phase Deposition

검색결과 59건 처리시간 0.032초

Organic Vapor Phase Deposition 방식을 이용한 펜타센 유기박막트랜지스터의 제작 (Fabrication of Pentacene Thin Film Transistors by using Organic Vapor Phase Deposition System)

  • 정보철;송정근
    • 한국전기전자재료학회논문지
    • /
    • 제19권6호
    • /
    • pp.512-518
    • /
    • 2006
  • In this paper, we investigated the deposition of pentacene thin film on a large area substrate by Organic Vapor Phase Deposition(OVPD) and applied it to fabrication of Organic Thin Film Transistor(OTFT). We extracted the optimum deposition conditions such as evaporation temperature of $260^{\circ}C$, carrier gas flow rate of 10 sccm and chamber vacuum pressure of 0.1 torr. We fabricated 72 OTFTs on the 4 inch size Si Wafer, Which produced the average mobility of $0.1{\pm}0.021cm^2/V{\cdot}s$, average subthreshold slope of 1.04 dec/V, average threshold voltage of -6.55 V, and off-state current is $0.973pA/{\mu}m$. The overall performance of pentacene TFTs over 4 ' wafer exhibited the uniformity with the variation less than 20 %. This proves that OVPD is a suitable methode for the deposition of organic thin film over a large area substrate.

Selective Vapor-Phase Deposition of Conductive Poly(3,4-ethylenedioxythiophene) Thin Films on Patterned FeCl3 Formed by Microcontact Printing

  • Lee, Bo H.;Cho, Yeon H.;Shin, Hyun-Jung;Kim, Jin-Yeol;Lee, Jae-gab;Lee, Hai-won ;Sung, Myung M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권10호
    • /
    • pp.1633-1637
    • /
    • 2006
  • We demonstrate a selective vapor-phase deposition of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin films on patterned $FeCl_3$. The PEDOT thin films were grown on various substrates by using the vapor-phase polymerization of ethylenedioxythiophene (EDOT) with $FeCl_3$ catalytic layers at 325 K. The selective deposition of the PEDOT thin films using vapor-phase polymerization was accomplished with patterned $FeCl_3$ layers as templates. Microcontact printing was done to prepare patterned $FeCl_3$ on polyethyleneterephthalate (PET) substrates. The selective vapor-phase deposition is based on the fact that the PEDOT thin films are selectively deposited only on the regions exposing $FeCl_3$ of the PET substrates, because the EDOT monomer can be polymerized only in the presence of oxidants, such as $FeCl_3$, Fe($CIO_4$), and iron(II) salts of organic acids/inorganic acids containing organic radicals.

OLED display manufacturing by Organic Vapor Phase Deposition

  • Marheineke, B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1676-1681
    • /
    • 2006
  • We report on Organic Vapor Phase Deposition $(OVPD^{(R)})$ an innovative deposition technology for organic light emitting device (OLED) and organic semiconductor manufacturing. The combination of $OVPD^{(R)}$ with Close Coupled Showerhead (CCS) technology results in manufacturing equipment with vast potential for cost effective manufacturing of OLED displays commercially competitive to LCD. The actual $OVPD^{(R)}$ equipment concept and design is discussed: Computational Fluid Dynamic (CFD) modeling is compared with experimental results proving the excellent controllability of the deposition process. Further other production relevant deposition properties are being reviewed e.g. high deposition rates and high organic material utilization efficiency of the $OVPD^{(R)}$ - Technology. Data from devices made by $OVPD^{(R)}$ show comparable/ superior performance to those fabricated with conventional vacuum thermal evaporation (VTE) techniques. An outlook on further potentials of $OVPD^{(R)}$ with respect to enabling advanced organic device structures is given.

  • PDF

Enhanced Control of OLED Deposition Processes by OVPD(R)

  • Schwambera, M.;Meyer, N.;Keiper, D.;Heuken, M.;Hartmann, S.;Kowalsky, W.;Farahzadi, A.;Niyamakom, P.;Beigmohamadi, M.;Wuttig, M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.336-339
    • /
    • 2007
  • The enhanced control of OLED deposition processes by Organic Vapor Phase Deposition $(OVPD^{(R)})$ is discussed. $OVPD^{(R)}$ opens a wide space of process control parameters. It allows the accurate and individual control of deposition layer properties like morphology and precise mixing of multi component layers (co-deposition) in comparison to conventional deposition manufacturing processes like e. g. VTE (vacuum thermal evaporation).

  • PDF

Improving current and luminous efficacy of red phosphorescent Organic Light Emitting Diodes (OLEDs) by introducing graded-layer device designs enabled by Organic Vapor Phase Deposition (OVPD)

  • Schwambera, Markus;Keiper, Dietmar;Meyer, Nico;Heuken, Michael;Lindla, Florian;Bosing, Manuel;Zimmermann, Christoph;Jessen, Frank;Kalisch, Holger;Jansen, Rolf H.;Gemmern, Philipp Van;Bertram, Dietrich
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1140-1143
    • /
    • 2009
  • Organic Vapor Phase Deposition (OVPD) equipment enables the accurate and simultaneous control of deposition rates of multiple materials as well as their homogenous mixing in the gas phase. Graded or even cross-faded layers by varying carrier gas flow are options to improve OLED performances. As example, we will show how the efficacies of standard red phosphorescent OLEDs with sharp interfaces can be increased from 18.8 cd/A and 14.1 lm/W (1,000 cd/$m^2$) to 36.5 cd/A (+94 %, 18 % EQE) and 33.7 lm/W (+139 %) by the introduction of cross-fading, which is a controlled composition variation in the organic film.

  • PDF

Process Controllability and Stability in Organic Vapor Phase Deposition

  • Schwambera, M.;Gersdorff, M.;Reinhold, M.;Meyer, N.;Strauch, G.;Marheineke, B.;Heuken, M.;Zhou, T.X.;Ngo, T.;Brown, J.J.;Shtein, M.;Forrest, S.R.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.824-827
    • /
    • 2004
  • High performance green $Ir(ppy)_3$-based phosphorescent OLEDs (PHOLEDs) have been fabricated by organic vapor phase deposition ($OVPD^{TM}$). In addition to demonstrating both efficiency and operational device lifetime comparable to devices built by vacuum thermal evaporation, we report on the controllability and stability of the $OVPD^{TM}$ process. Specifically, run-to-run and day-to-day deposition rate reproducibility of better than 2 % for three consecutive days is demonstrated.

  • PDF

Fabrication of Organic-Inorganic Superlattice Films Toward Potential Use For Gas Diffusion Barrier

  • 윤관혁;;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.394-394
    • /
    • 2012
  • We fabricated organic-inorganic superlattice films using molecular layer deposition (MLD) and atomic layer deposition (ALD). The MLD is a gas phase process in the vacuum like to atomic layer deposition (ALD) and also relies on a self-terminating surface reaction of organic precursor which results in the formation of a monolayer in each sequence. In the MLD process, 'Alucone' is very famous organic thin film fabricated using MLD. Alucone layers were grown by repeated sequential surface reactions of trimethylaluminum and ethylene glycol at substrate temperature of $80^{\circ}C$. In addition, we developed UV-assisted $Al_2O_3$ with gas diffusion barrier property better than typical $Al_2O_3$. The UV light was very effective to obtain defect-free, high quality $Al_2O_3$ thin film which is determined by water vapor transmission rate (WVTR). Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of each organic, inorganic film. Composition of the organic films was confirmed by infrared (IR) spectroscopy. Ultra-violet (UV) spectroscopy was employed to measure transparency of the organic-inorganic superlattice films. WVTR is calculated by Ca test. Organic-inorganic superlattice films using UV-assisted $Al_2O_3$ and alucone have possible use in gas diffusion barrier for OLED.

  • PDF

저온화학기상증착에 의한 인듐산화막 구조에 관한 연구 (Structural study of indium oxide thin films by metal organic chemical vapor deposition)

  • 스리벤카트;성낙진;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.47-47
    • /
    • 2007
  • Indium oxide conducting films were dep9sited on Si(100) substrates at various temperatures by liquid delivery metal organic chemical vapor deposition using Indium (III) tris (2,2,6,6-tetramethyl-3.5-heptanedionato) $(dpm)_3$ precursors. The films deposited at $200{\sim}400^{\circ}C$ were grown with a (111) preferred orientation and exhibit an increase of grain size from 21 to 33nm with increasing deposition temperature. In the range of deposition temperature, there is no metallic indium phase in deposited films.

  • PDF

진공증착법을 이용한 PVDF 유기박막의 분자배향 (The Molecular Orientation of PVDF Organic Thin Film by Vapor Deposition Method)

  • 박수홍;이선우;임응춘;최충석;이덕출
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.297-300
    • /
    • 1997
  • In this study, The PVDF thin film was fabricated on the one method of dry-process the physical vapor deposition method, applied electric field, and evaporation control in $\beta$-PVDF thin film preparation. A study on the electric-field-phase change of PVDF thin film in physical vapor deposition using the polymer deposition apparatus which are manufactured for oneself. In the analysis of Fourier-Transform Infrared spectra, according to increasing of electric field intensity, the 510$cm^{-1}$ / peak and 1273$cm^{-1}$ / peak which are showed in $\beta$-PVDF increase, on the contrary the 530$cm^{-1}$ / peak and 977$cm^{-1}$ / peak which are showed in $\alpha$-PVDF decrease.

  • PDF