• Title/Summary/Keyword: Organic Particle Size

Search Result 438, Processing Time 0.035 seconds

Preparation of Ultrafine Nickel Powders by Wet Reduction Process (습식 환원법에 의한 니켈 미분말의 제조)

  • Lee, Yoon-Bok;Moon, Young-Tae;Shin, Dong-Woo;Kim, Kwang-Ho
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.803-808
    • /
    • 2002
  • Nickel powders were prepared from nickel chloride solution by wet reduction process, and the size control of the particles was investigated with reactant concentration, dispersant agent, and the addition of ethanol as an organic solvent in NiCl$_2$ aqueous solution. The size of the particle decreased with the increase of nickel chloride concentration. Their average particle size were 1.9$\mu\textrm{m}$, 1.6$\mu\textrm{m}$ and $1.5\mu\textrm{m}$ with 0.5M, 0.8M and 1.0M of nickel chloride concentration respectively. The spherical particle was easily controlled by the addition of ethanol as an organic solvent. Especially, in 30 vol% of ethanol, the average particle size and specific surface area were about 0.2$\mu\textrm{m}$ and 8.98m$^2$/g, respectively.

Single Particle Analysis of Atmospheric Aerosol Particles Collected in Seoul, 2001, Using Low-Z Particle Electron Probe X-ray Microanalysis (Low-Z Particle Electron Probe X-ray Microanalysis를 이용한 2001년 서울시 대기 중 입자상 물질 분석)

  • Koo Hee Joon;Kim HyeKyeong;Ro Chul-Un
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.823-832
    • /
    • 2004
  • Atmospheric aerosol particles collected in Seoul on four single days, each in every seasons of 2001, were characterized and classified on the basis of their chemical species using low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA). Low-Z particle EPMA technique can analyze both the size and the chemical species of individual aerosol particles of micrometer size and provide detailed information on the size distribution of each chemical species. The major chemical species observed in Seoul aerosol were aluminosilicate, silicon dioxide, calcium carbonate, organic, carbon-rich, marine originated, and ammonium sulfate particles, etc. The soil originated species, such as aluminosilicate, silicon dioxide, and calcium carbonate were the most popular in the coarse fraction, meanwhile, carbonaceous and ammonium sulfate were the dominant species found in the fine fraction. Marine originated species such as sodium nitrate was frequently encountered, up to 30% of the analyzed aerosol particles.

The Characteristics of Sediment and Organic Content in the Dalpo Wetland (달포늪의 퇴적물과 유기물함량 특성 연구)

  • Kang, Dong Hwan;Kim, Sung Soo;Jung, Hwee Je;Kwon, Byung Hyuk;Kim, Il Kyu
    • Journal of Wetlands Research
    • /
    • v.9 no.3
    • /
    • pp.1-12
    • /
    • 2007
  • In this study, the correlation of organic content with particle size and type of sediment was found out.Particle size, stratigraphic section and organic content of sediments sampled from Dalpo wetland was analyzed. Dalpo wetland consists of three wetlands, and the area of Dalpo wetland is about $31,295m^2$. The particle size analyses for sampled sediments of 7 points (3 points in wetland A, 3 points in wetland B and 1 point in wetland C) were tested. As results of the particle size analyses, the sediment particle size becomes larger as to the edge of the wetland. It is revealed in order of wetland A > wetland C > wetland B. Borehole surveys with horizontal distance in the major and minor axes of wetland A, the major and minor axes of wetland B and the major axis of wetland C were accomplished. Clayey peat deposit is distributed at 10~90 cm depth below ground surface in the major axis of wetland A. The clayey peat deposit was the most thick at the center of wetland A that horizontal distance is 100 m. As the depth below ground surface of clayey peat deposit is less than 27 cm in the wetland B, we can infer that the life for the wetland B is being finished. Sediment composition of wetland C is simple because wetland C is small scale, and clayey peat deposit is distributed at 10~34 cm depth below ground surface. Sediment sampled by borehole survey in the Dalpo wetland was cut at interval of 10 cm, then organic content was analyzed. Organic content of wetland A sediment showed more than 40% until 70 cm depth below ground surface, also sediment of wetland B is similar to wetland A until 10 cm depth below ground surface, but is showed within 20 % above 30 cm depth below ground surface. Organic content of wetland B is showed the lowest as organic content near the ground surface is about 40%. All of the three wetlands, organic content is showed higher at clayey peat deposit near to ground surface. This is caused by finer particles of the clayey peat deposit, also organic materials were supplied from dead vegetation. Organic content of the Dalpo wetland showed in order of wetland A > wetland C > wetland B. This result is caused by thickness of clayey peat deposit in sediment. Through this study, it was verified that organic content of the Dalpo wetland sediment was dominated by particle size of sediment and vegetation of the upper part.

  • PDF

Effect on Particle Size of Activated Carbons for Coagulation and Adsorption (활성탄 입자크기가 응집 및 흡착에 미치는 영향)

  • Kim, Young-Il;Bae, Byung-Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.719-726
    • /
    • 2006
  • Adsorption isotherms and kinetics for taste and odor (T&O) compounds and natural organic matters (NOMs) were performed to evaluate the impacts of activated carbon particle size on coagulation and adsorption. Adsorption capacities for iodine, T&O compounds, and NOM of all the activated carbons under #325 mesh were more excellent than those of virgin activated carbons. Small activated carbon particles were more rapidly adsorbed low molecular weight T&O compounds in the water, while those were slowly adsorbed high molecular weight NOM. When the activated carbon and alum were added simultaneously, the adsorption capacity for organics was better than alum was added alone.

Characteristics of the Ceramic Filter with the Control of Particle Size and Graphite Additive for the Hazardous Particle and Gas Removal (입도와 흑연 첨가제에 따른 유해 입자 및 가스 동시제거용 세라믹필터 특성평가)

  • Cho, Eul-Hun;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.454-459
    • /
    • 2014
  • In this study, the porous ceramic filter was developed to be able to remove both dust and hazardous gas contained in fuel gas at high temperature. The porous ceramic filters were fabricated and used as a catalyst support. And the effects have been investigated such as the mean particle size, organic content and addition of foaming agent on the porosity, compressive strength and pressure drop of ceramic filters. With the increase of mean powder size and the organic content for the cordierite filter, the porosity was increased, but the compressive strength and pressure drop were decreased. From the results of the research, the optimum condition for the fabrication of ceramic filters could be acquired and they had the porosity of 58%, the compressive strength of 13.4 MPa and the pressure drop of 250 Pa. It was expected that this ceramic filter was able to be applied to the glass melting furnace, combustor, and dust/toxic gas removal filter.

Study of Soluble Organic Matter of Livestock Wastewater Treated by Ionized Gas and Coagulation after Ionized Gas (이온화가스와 응집공정을 조합한 축산폐수의 처리시 용존 유기물의 특성에 관한 연구)

  • Lee, Eun-Ju;Chung, Paul-Gene;Kim, Min-Jeong;Hyun, Mi-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.708-713
    • /
    • 2004
  • This study was performed to investigate the variations of hydrophilic and hydrophobic organic matter fractions in soluble organic matter according to livestock wastewater treatment by ionized gas and coagulation effect to these fractions after ionized gas contact. As a result of experiment, because of ionized gas contact, particle in the surface of livestock wastewater was more smaller and the result was consisted of particle size analysis and the amount of small size was increased. Also, we confirmed that organic matters in livestock wastewater by ionized gas contact were removed. The relation equation between ionized gas contact time(X) and $TCOD_{cr}$(Y) was shown as yscale(y)=3.748-0.431* xscale(X). That between ionized gas contact time(X) and $TCOD_{cr}$(Y) was yscale(y)=3.283-0.463* xscale(X). As respects the HPL(hydrophilic matter)and HPO(hydrophobic matter) fractions of raw in livestock wastewater treatment plant, HPL fraction was 53.2% and HPO fraction was 46.8%. But, HPO fraction according to ionized gas treatment was increased at 30min and after that time, HPL fraction was increased. Also, when we performed coagulation process after ionized gas treatment of raw wastewater, the removal efficiency of organic matter was the highest at 30min of ionized gas treatment because of the variation of HPL and HPO fractions in organic matter by ionized gas. In coagulation process following after ionized gas process, HPO was removed more effective than HPL.

Characteristic of Size-Resolved Water-Soluble Organic Carbon in Atmospheric Aerosol Particles Observed during Daytime and Nighttime in an Urban Area (도시지역 낮.밤 대기에어로졸의 입경 별 수용성 유기탄소의 특성)

  • Park, Seung Shik;Shin, Dong Myung
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.7-21
    • /
    • 2013
  • Twelve-hour size-resolved atmospheric aerosols were measured to determine size distributions of water-soluble organic carbon(WSOC) during daytime and nighttime, and to investigate sources and formation pathways of WSOC in individual particle size classes. Mass, WSOC, ${NO_3}^-$, $K^+$, and $Cl^-$ at day and night showed mostly bimodal size distributions, peaking at the size range of $0.32-0.55{\mu}m$(condensation mode) and $3.1-6.2{\mu}m$(coarse mode), respectively, with a predominant condensation mode and a minor coarse mode. While ${NH_4}^+$ and ${SO_4}^{2-}$ showed unimodal size distributions which peaked between 0.32 and $0.55{\mu}m$. WSOC was enriched into nuclei mode particles(< $0.1{\mu}m$) based on the WSOC-to-mass and WSOC-to-water soluble species ratios. The sources and formation mechanisms of WSOC were inferred in reference to the size distribution characteristics of inorganic species(${SO_4}^{2-}$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, and $Cl^-$) and carbon monoxide. Nuclei mode WSOC was likely associated with primary combustion sources during daytime and nighttime. Among significant sources contributing to the condensation mode WSOC were homogeneous gas-phase oxidation of VOCs, primary combustion emissions, and fresh(or slightly aged) biomass burning aerosols. The droplet mode WSOC could be attributed to aqueous oxidation of VOCs in clouds, cloud-processed biomass burning aerosols, and small contributions from primary combustion sources. From the correlations between WSOC and soil-related particles, and between WSOC and sea-salt particles, it is suggested that the coarse mode WSOC during daytime is likely to condense on the soil-related particles($K^+$ and $Ca^{2+}$), while the WSOC in the coarse fraction during nighttime is likely associated with the sea-salt particles($Na^+$).

Effects of particle size and adaptation duration on the digestible and metabolizable energy contents and digestibility of various chemical constituents in wheat for finishing pigs determined by the direct or indirect method

  • Fan, Yuanfang;Guo, Panpan;Yang, Yuyuan;Xia, Tian;Liu, Ling;Ma, Yongxi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.554-561
    • /
    • 2017
  • Objective: This experiment was conducted as a $3{\times}2{\times}2$ factorial design to examine the effects of particle size (mean particle size of 331, 640, or $862{\mu}m$), evaluation method (direct vs indirect method) and adaptation duration (7 or 26 days) on the energy content and the apparent total tract digestibility (ATTD) of various chemical components in wheat when fed to finishing pigs. Methods: Forty-two barrows ($Duroc{\times}Landrace{\times}Yorkshire$) with an initial body weight of $63.0{\pm}0.8kg$ were individually placed in metabolic cages and randomly allotted to 1 of 7 diets with 6 pigs fed each diet. For the indirect method, the pigs were fed either a corn-soybean meal based basal diet or diets in which 38.94% of the basal diet was substituted by wheat of the different particle sizes. In the direct method, the diets contained 97.34% wheat with the different particle sizes. For both the direct and indirect methods, the pigs were adapted to their diets for either 7 or 26 days. Results: A reduction in particle size linearly increased the digestible energy (DE) and metabolizable energy (ME) contents as well as the ATTD of gross energy, crude protein, organic matter, ether extract (EE) and acid detergent fiber (ADF) (p<0.05), and had a trend to increase the ATTD of dry matter of wheat (p = 0.084). The DE, ME contents, and ATTD of gross energy, crude protein, dry matter and organic matter were higher (p<0.05) when determined by the direct method, but the ATTD of ADF, EE, and neutral detergent fiber were higher when determined by the indirect method (p<0.05). Prolongation of the adaption duration decreased the ATTD of neutral detergent fiber (p<0.05) and had a trend to increase the ATTD of EE (p = 0.061). There were no interactions between particle size and the duration of the adaptation duration. The ATTD of EE in wheat was influenced by a trend of interaction between method and adaptation duration (p = 0.074). The ATTD of ADF and EE in wheat was influenced by an interaction between evaluation method and wheat particle size such that there were linear equations (p<0.01) about ATTD of ADF and EE when determined by the direct method but quadratic equations (p = 0.073 and p = 0.088, respectively) about ATTD of ADF and EE when determined by the indirect method. Conclusion: Decreasing particle size can improve the DE and ME contents of wheat; both of the direct and indirect methods of evaluation are suitable for evaluating the DE and ME contents of wheat with different particle sizes; and an adaptation duration of 7 d is sufficient to evaluate DE and ME contents of wheat in finishing pigs.

Major factors determining the size distributions of atmospheric water-soluble aerosol particles at an urban site during winter (겨울철 도시지역 대기 수용성 에어로졸 입자의 크기 분포를 결정하는 주요 인자)

  • Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.3
    • /
    • pp.43-54
    • /
    • 2021
  • Size distributions of atmospheric particulate matter (PM) and its water-soluble organic and inorganic components were measured between January and February 2021 at an urban site in Gwangju in order to identify the major factors that determine their size distributions. Their size distributions during the study period were mainly divided into two groups. In the first group, PM, NO3-, SO42-, NH4+ and water-soluble organic carbon (WSOC) exhibited bi-modal size distributions with a dominant condensation mode at a particle size of 0.32 ㎛. This group was dominated by local production of secondary water-soluble components under atmospheric stagnation and low relative humidity (RH) conditions, rather than long-range transportation of aerosol particles from China. On the other hand, in the second group, they showed tri-modal size distributions with a very pronounced droplet mode at a diameter of 1.0 ㎛. These size distributions were attributable to the local generation and accumulation of secondary aerosol particles under atmospheric conditions such as atmospheric stagnation and high RH, and an increase in the influx of atmospheric aerosol particles by long-distance transportation abroad. Contributions of droplet mode NO3-, SO42-, NH4+ and WSOC to fine particles in the second group were significantly higher than those in the first group period. However, their condensation mode contributions were about two-fold higher in the first group than in the second group. The significant difference in the size distribution of the accumulation mode of the WSOC and secondary ionic components between the two groups was due to the influx of aerosol particles with a long residence time by long-distance transport from China and local weather conditions (e.g., RH).

Development and Applications of Frame Retardant Nano and Microcapsule (난연기능 nano 및 microcapsule의 개발 및 응용(Ⅰ))

  • Kim, Hea-In;Hong, Yo-Han;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.20 no.4
    • /
    • pp.31-42
    • /
    • 2008
  • Tricrecyl phosphate(TCP)-containing polyurea microcapsules were prepared by interfacial polymerization using aromatic 2,4-toluene diisocyanate(TDI) and ethylenediamine(EDA) as wall forming materials. The effects of the protective colloids of polyvinylalcohol(PVA) and gelatin were investigated through experimentation. The mean size of prepared polyurea microcapsules was smaller and the surface morphology of the microcapsule prepared by the PVA as protective colloid was much smoother than the gelatin. As the concentration of protective colloid increased, the wall membrane of the polyurea microcapsules became more stable, the thermal stability of the wall membrane increased, the mean particle size became smaller, and the particle distribution was more uniform. PET containg microTCPs have a higher activation energy of decomposition, higher char content and lower heat of combustion.