• Title/Summary/Keyword: Organic Matter Reduction

Search Result 300, Processing Time 0.025 seconds

Characteristics of Biodegradation of Organic Matters in the Nakdong River Watershed (낙동강 수계 내 유기물 시료에 따른 생분해 특성)

  • Kim, Jung Sun;Kang, Lim Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.605-611
    • /
    • 2014
  • This research was carried out to examine the concentration and fate of dissolved organic matter due to the increased detention time in middle and down stream of the Nakdong River. Aldo the characteristics of biodegradation of DOM were investigated according to the various water sources. The approaches used to characterize DOM biodegradability include the changes in DOC concentration and DOM fraction. Long-term biodegradation test for each organic source was also conducted. As the result, maximum 50% of DOC was reduced during the first 30 days of biodegradation tests. After 30 days, biodegradation of organic matter was continuously progressed, as showing continuous reduction of DOC. While DOC concentration was reduced, SUVA values for the organic matters were increased. Properties of dissolved organic matter by water sources also showed decreasing hydrophilic components while showing increased hydrophobic components. The more rapid reduction of the hydrophilic components than hydrophobic components might be due to the preferential degradation of the hydrophilic components by microorganisms during biodegradation process.

Organic Matter and Hydraulic Loading Effects on Nitrification Performance in Fixed Film Biofilters with Different Filter Media

  • Peng, Lei;Oh, Sung-Yong;Jo, Jae-Yoon
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.277-286
    • /
    • 2003
  • Nitrification performance of fixed film biofilters using coarse sand, loess bead, or styrofoam beads in biofilter columns 1 meter high and 30cm in diameter were studied at different hydraulic and organic matter loading rates. Synthetic wastewater was supplied to the culture tank in order to maintain desired TAN concentrations in inlet water to biofilters. All the biofilters were conditioned 5 months before start of sampling. TAN and $NO_2-N$ conversion rates increased with an increase in the hydraulic loading rate (HLR). However, the improvement in biofilter performance was not linearly correlated to HLR in styrofoam bead filters. This is mainly due to the characteristics of the styrofoam beads used. TAN conversion rates of sand filters increased with the increase of HLR up to $200m^3/m^2$. per day. No increase in the TAN conversion rate was observed at the highest HLR since flooding on the media surface took place. HLR had a significant impact on the TAN conversion rates in loess bead filter up to the highest HLR tested (P<0.05). TAN conversion rates were much less at organic matter loading rates of 9 and 18kg $O_2/m^3$ per day than those without the addition of organic matter in styrofoam bead filters. The addition of glucose resulted in a reduction of the TAN conversion rate from 540 to 284g $TAN/m^3$ per day. No significant difference of TAN conversion rates between the two organic matter loading rates was found (p<0.05). This indicates that the impact of organic matter on nitrification becomes less and less sensitive with an increase in the COD/TAN ratio. At an organic matter loading rate of 9kg $O_2/m^3$. per day, a great reduction of TAN conversion rates was observed in sand filters and loess bead filters. Clearly, organic matter can be one of the most Important Impacting factors on nitrification. $NO_2-N$ conversion rates showed a similar trend for TAN. Based on the TAN and nitrite conversion rates, styrofoam beads showed the best performance among the three filter media tested. Also, the low gravity and price of styrofoam beads make the handling easier and more cost-effective for commercial application. The results obtained at the highest organic matter loading rates can be used in the biofilter design in recirculating aquaculture system.

Organic Matter Cycle by Biogeochemical Indicator in Tidal Mud Flat, West Coast of Korea (생지화학적 지표를 이용한 서해안 갯벌 퇴적층에서의 유기물 순환에 관한 연구)

  • Lee, Dong-Hun;Lee, Jun-Ho;Jeong, Kap-Sik;Woo, Han Jun;Kang, Jeongwon;Shin, Kyung-Hoon;Ha, Sun-Yong
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.25-37
    • /
    • 2014
  • To understand the degradation processes of organic matter related to sulfate reduction by Sulfate Reduction Bacteria (SRB) in the tidal flat sediments of Hwang-do and Sogeun-ri, Tae-an Peninsula in Chungnam-do, biogeochemical characteristics were analyzed and highlighted using specific microbial biomarkers. The organic geochemical parameters (TOC, ${\delta}^{13}C_{org}$, C/N ratio, long-chain-n-alkane) indicate that most of the organic matter has been derived from marine phytoplankton and bacteria in the fine-grained sediment of Sogeun-ri, although terrestrial plant components have occasionally been incorporated to a significant degree in the coarse-grained sediment of Hwang-do. The concentration of sulfate in pore water is a constant tendency with regard to depth profile, while methane concentration appears to be slightly different with regard to depth profile at the two sites. Especially, the sum of bacteria fatty acid (a-C15:0 + i-C15:0 + C16:1w5) confirms that the these concentrations in Sogeun-ri are related to the degradation of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) compounds from the crude oil retained in the sediments as a result of the Hebei Spirit oil-spill accident in 2007. The methane-related microbial communities as shown by lipid biomarkers (crocetane, PMI) are larger in some sedimentary sections of Hwang-do than in the Sogeunri tidal flat. These findings suggest that methane production by microbiological processes is clearly governed by SRB activity along the vertical succession in organic-enriched tidal flats.

Effect of Decomposition on Nitrogen Dynamics in Soil Applied with Compost and Rye

  • Ko, Byong-Gu;Kim, Myung-Sook;Park, Seong-Jin;Yun, Sun-Gang;Oh, Taek-Keun;Lee, Chang Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.648-657
    • /
    • 2015
  • Soil organic matter (SOM) plays an important role in the continuous production and environmental conservation in arable soils. In particular, the decomposition of organic matter in soil might promote soil organic matter and fertility due to the mineralization of N. In this study, to evaluate the effect of organic matter amendment on the C mineralization and N dynamic, $CO_2-C$ flux, extractable N and $N_2O$ emission were determined using closed chamber for 4 weeks at 10, 15, $20^{\circ}C$ of incubation temperature after the mixture of $2Mgha^{-1}$ rice straw compost and rye in sandy loam and clay loam. Regardless of soil texture, decomposition rates of rice straw compost and rye at $10{\sim}20^{\circ}C$ of incubation temperature ranged from 0.9 to 3.8% and 8.8 to 20.3%, respectively. Rye application in soil increased $NH_4-N$ and $NO_3-N$ content as well as the $N_2O$ emission compared to the rice straw compost. After incubation for 4 weeks, total C content in two soils was higher in rice straw compost than in rye application. In conclusion, application of rice straw compost and rye to soil was able to improve the soil organic matter and fertility. However, organic matter including the recalcitrant compounds like rice straw compost would be effective on the management of soil organic matter and the reduction of greenhouse gases in soil.

A Study on the Biogeochemistry of the Sediments in the Han River Estuary (한강하구 퇴적물의 생지화학적 반응에 관한 연구)

  • Lim, Bo-Mi;Ki, Bo-Min;Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.839-844
    • /
    • 2009
  • This research investigates the importance of the microbial metabolic pathways such as denitrification, iron reduction, and methanogenesis, in the degradation of organic matters of the sediments. There are statistically significant differences( P < 0.05) in the rates of denitrification, iron reduction, and methanogenesis according to the location: Site A has no plant, Site B is dominated by Scirpus, and Site C is dominated by Phragmites. Among them, Site C showed different methanogenesis rate depending on the sediments depth. The organic matter content increased from Site A to Site C. Site A had the smallest organic matter content whereas it showed the largest denitrification rate and iron reduction rate. Site C had the largest methanogenesis rate. Denitrification is the dominant pathways based on the assumption that anaerobic degradation of organic matter is mainly carried out through denitrification, iron reduction, and methanogenesis.

Study on Construction of Soil Structure in Creation of Man-made Tidal Flat (인공 간석지 창출에 있어서 토양조성에 관한 연구)

  • Lee, Jeoung-Gyu;Suh, Hea-Dong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.85-92
    • /
    • 2000
  • The purpose of this study was to identify the controlling factors to construct tidal flat ecosystems having similar characteristics as natural ones. We transplanted the soil in a constructed tidal flat to a natural one and vice versa. Parameters monitored after these transplantations were silt content, organic matter, bacterial population and oxidation-reduction potential. Moreover, the relationship among silt content, organic matter and bacterial population was investigated by laboratory column experiment. The silt content, organic matter, bacterial population and vortical profile of oxidation-reduction potential in the soil transplanted from the constructed tidal flat to the natural one changed to similar values to those In the natural one. On the contrary, all the parameters for the soil transplanted from the natural tidal flat to the constructed one changed to similar values as those in the constructed one. The silt contents in these two transplanted soils were in proportion to the organic carbon contents and bacterial population. Similarly, the bacterial population in laboratory column experiment increased with the increase in silt and organic matter contents. It seemed to be important to select a place to enhance accumulative of silt and/or to maintain the silt content by hydrodynamic control of seawater in order to construct a tidal flat having similar characteristics as natural one.

  • PDF

Significance of Dissimilatory Fe(III) Reduction in Organic Matter Oxidation and Bioremediation of Environmental Contaminants in Anoxic Marine Environments (혐기성 해양환경에서 철 환원세균에 의한 유기물 분해 및 생물정화)

  • Hyun Junc-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.145-153
    • /
    • 2005
  • I reviewed an ecological and environmental significance of microbial carbon respiration coupled to dis-similatory reduction of fe(III) to Fe(II) which is one of the major processes controlling mineralization of organic matter and behavior of metals and nutrients in various anaerobic environments. Relative significance of Fe(III) reduction in the mineralization of organic matter in diverse marine environments appeared to be extremely variable, ranging from negligible up to $100\%$. Cenerally, Fe(III) reduction dominated anaerobic car-bon mineralization when concentrations of reactive Fe(III) were higher, indicating that availability of reactive Fe(III) was a major factor determining the relative significance of Fe(III) reduction in anaerobic carbon mineralization. In anaerobic coastal sediments where $O_2$ supply is limited, tidal flushing, bioturbation and vegetation were most likely responsible for regulating the availability of Fe(III) for Fe(III) reducing bacteria (FeRB). Capabilities of FeRB in mineralization of organic matter and conversion of metals implied that FeRB may function as a useful eco-technological tool for the bioremediation of anoxic coastal environments contaminated by toxic organic and metal pollutants.

Measures to improve water quality of Lake Euiam by controlling the incoming pollutants to the lake (의암호에 유입되는 오염물질 관리를 통한 호소 수질개선 방안)

  • Hwang, Hwan-Min;Yi, Geon-Ho;Kim, Mi-Yeon;Kim, Dong-Jin;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.783-790
    • /
    • 2011
  • The purpose of this study was to suggest the alternative measures to properly manage the water quality of Lake Euiam, Chuncheon. Current pollution level of Gongji stream (influent to Lake Euiam) and sources of contamination in Lake Euiam were investigated. Particle size, organic matter and nutrient contents, heavy metals were analyzed for sediment samples taken from lower region of Gongji stream. Average organic matter content of nine sediment samples was 5.7%, and for nitrogen and phosphorus it was 750 mg/kg and 977mg/kg, respectively. Heavy metals including aluminum, iron, manganese and zinc were measured, whereas Cd and As were not detected. Effluent from Chuncheon Wastewater Treatment Plant appeared to be one of the main cause of organic matter and nutrients level in Lake Euiam. Inhibition of primary production and consequent reduction of organic matter content within the Lake should be a key measure to protect the water quality of Lake Euiam. Preventive measures to reduce the level of nutrients in wastewater treatment effluent were found necessary.

A comparative study on efficiency in the sulfate -added anaerobic landfill site and the semi-aerobic landfill site for the inhibition of methane genration from a landfill site (매립지의 메탄 발생억제를 위한 황산염 첨가형매립지 및 준호기성 매립지의 효율 비교에 대한 연구)

  • 김정권;김부길
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.325-330
    • /
    • 1999
  • This study aims to observe the inhibition of methane generation, the decomposition of organic matter, and the trend of outflowing leachate, using the simulated column of the anaerobic sanitary landfill structure of sulfate addition type which is made by adding sulfate to a current anaerobic landfill structure, and the simulated column of semi-aerobic landfill structure in the laboratory which is used in the country like Japan in order to inhibit methane from a landfill site among the gases caused by a global warming these days, and at the same time to promote the decomposition of organic matter, the index of stabilization of landfill site. As a result of this study, it is thought that the ORP(Oxidation Reduction Potential) of the column of semi-aerobic landfill structure gradually represents a weak aerobic condition as time goes by, and that the inside of landfill site is likely to by in progress into anaerobic condition, unless air effectively comes into a semi-aerobic landfill structure in reality as time goes by. In addition, it can be seen that the decomposition of organic matter is promoted according to sulfate reduction in case of $R_1$, a sulfate-added anaerobic sanitary landfill structure, and that the stable decomposition of organic matter in $R_1$ makes a faster progess than $R_2$. Moreover it can be estimated that $R_1$, a sulfate-added anaerobic sanitary landfill structure has an inhibition efficiency of 55% or so, compared with $R_2$, a semi-aerobic landfill structure, in the efficiency of inhibiting methane.

  • PDF

Biological stability in the ozone and peroxone pretreatment systems in river water (하천수 내 생물학적 안정성에 따른 유기물 특성변화와 오존산화기반 전처리 연구)

  • Park, Se-Hee;Noh, Jin-Hyung;Park, Ji-Won;Maeng, Sung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.159-168
    • /
    • 2018
  • Climate change is believed to increase the amount of dissolved organic matter in surface water, as a result of the release of bulk organic matter, which make difficult to achieve a high quality of drinking water via conventional water treatment techniques. Therefore, the natural water treatment techniques, such as managed aquifer recharge (MAR), can be proposed as a alternative method to improve water quality greatly. Removal of bulk organic matter using managed aquifer recharge system is mainly achieved by biodegradation. Biodegradable dissolved organic carbon (BDOC) and assimilable organic carbon (AOC) can be used as water quality indicators for biological stability of drinking water. In this study, we compared the change of BDOC and AOC with respect to pretreatment methods (i.e., ozone or peroxone). The oxidative pretreatment can transform the recalcitrant organic matter into readily biodegradable one (i.e., BDOC and AOC). We also investigated the differences of organic matter characteristics between BDOC and AOC. We observed the decreases in dissolved organic carbon (DOC) and the tryptophan-like fluorescence intensities. Liquid chromatographic - organic carbon detection (LC-OCD) analysis also showed the reduction of the low molecular weight (LMW) fraction (15% removed, less than 500 Da), which is known to be easily biodegradable, and the biopolymers, high molecular weight fractions (66%). Therefore, BDOC consists of a broad range of organic matter characteristics with respect to molecular weight. In AOC, low molecular weight organic matter and biopolymers fraction was reduced by 11 and 6%, respectively. It confirmed that biodegradation by microorganisms as the main removal mechanism in AOC, while BDOC has biodegradation by microorganism as well as the sorption effects from the sand. $O_3$ and $O_3+H_2O_2$ were compared with respect to biological stability and dissolved organic matter characteristics. BDOC and AOC were determined to be about 1.9 times for $O_3$ and about 1.4 times for $O_3+H_2O_2$. It was confirmed that $O_3$ enhanced the biodegradability by increasing LMW dissolved organic matter.