• Title/Summary/Keyword: Organic Light-Emitting Device

Search Result 598, Processing Time 0.026 seconds

Enhancement of outcoupling efficiency of OLEDs by using nanoimprinted polymer nanostructures

  • Jeon, So-Hee;Kang, Jae-Wook;Park, Hyung-Dol;Shim, Jong-Youp;Jeong, Jun-Ho;Kim, Se-Heon;Youn, Jae-R.;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.521-522
    • /
    • 2008
  • An etch-less simple method was developed to fabricate two-dimensional nanostructures on glass substrate directly by using UV curable polymer resin and UV nanoimprint lithography in order to improve output coupling efficiency of OLEDs. OLEDs integrated on nanoimprinted substrates enhanced electro-luminance intensity by up to 50% compared with the conventional device.

  • PDF

Dielectric Properties depending on Bias Voltage in Organic Light-emitting Diodes (유기 발광 소자의 바이어스 전압에 따른 유전 특성)

  • Oh, Yong-Cheul;Lee, Joon-Ung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1038-1042
    • /
    • 2005
  • We have investigated dielectric properties depending on bias voltage in organic light-emitting diodes using 8-hydroxyquinoline aluminum $(Alq_3)$ as an electron transport and emissive material. We analyzed the dielectric properties of organic light-emitting diodes using impedance of characteristics. Impedance characteristics was measured complex impedance Z and phase $\theta$ in the frequency range of 40 Hz to $10^8$ Hz. We obtained complex electrical conductivity, dielectric constant, and loss tangent $(tan\delta)$ of the device at room temperature. From these analyses, we are able to interpret a conduction mechanism and dielectric properties contributed by an interfacial and orientational polarization.

Effects of Buffer Layer in Organic Light-Emitting Diodes Using Poly(N-vinylcarbazole)

  • Chung, Dong-Hoe;Hong, Jin-Woong;Kim, Tae-Wan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.173-176
    • /
    • 2003
  • We have seen the effects of buffer layer in organic light-emitting diodes using poly(N-vinylcarbazole)(PVK). Polymer PVK buffer layer was made using static spin-casting method. Two device structures were made; one is ITO/TPD/Alq3/Al as a reference and the other is ITO/PVK/TPD/Alq3/Al to see the effects of buffer layer in organic light-emitting diodes. Current-voltage characteristics, luminance-voltage characteristics and luminous efficiency were measured with a variation of spin-casting speeds. We have obtained an improvement of luminous efficiency by a factor of two and half when the PVK buffer layer is used.

Emission Properties of White Light Emission Organic Electroluminescent Device using Exciplex Emission (Exciplex를 이용한 백색 유기 전계발광소자의 발광특성)

  • 김주승;김종욱;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.762-767
    • /
    • 2001
  • We report the white light emission from the multilayer organic electroluminescent(EL) device using exciplex emission. The exciplex at 500nm originated between poly(N-vinylcarvazole)(PVK) and 2,5-bis(5'-tert-butyl-2-benzoxazoly)thiophene(BBOT) and exciplex of 50nm originated from N,N'-diphenyl-N,N'-(3-methyphenyl)-1,1'-biphenyl-4,4'-diamine(TPD) and BBOT were observed. Also, the energy transfer from PVK to BBOT and poly(3-hexylthiophene)(P3HT) in mixed emitting materials was occurred. The electroluminescence(EL) spectra of organic EL device which have a device structure of ITO/CuPc(5nm)/emitting layer(100nm)/BBOT(30nm)/LiF(1.4nm)/Al(200nm) were slightly changed as a function of the applied voltage. The luminance fo 12.3 ${\mu}$W/$\textrm{cm}^2$ was achieved at 20V and EL spectrum measured at 20V corresponds to Commission Internationale de L\`Eclairage(CIE) coordinates of x=0.29 and y=0.353.

  • PDF

A Sutdy on Organic Emission Device of Chitosan Used (키토산을 이용한 유기 발광 소자에 관한 연구)

  • Jung, Ki-Taek;Kang, Soo-Jung;Kim, Nam-Ki;Roh, Seung-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1062-1065
    • /
    • 2004
  • The importance of display is becoming increasingly important due to the development of information and industry where it leads to diverse and abundant information in today's society. The demand and application range for FPD(Flat Panel Display), specifically represented by LCD(Liquid Crystal Display) and PDP(Plasma Display Panel), have been rapidly growing for its outstanding performance and convenience amongst many other forms of display. The current focus has been on OLED(Organic Light Emitting Diode) in the mobile form, which has just entered into mass production amid the different types of FPD. Many studies are being conducted in regards to device, vacuum evaporation, encapsulation, and drive circuits with the development of device as a matter of the utmost concern. This study develops a new type of light-emitting materials by synthesizing medical polymer organic chitosan and phosphor material CuS. Chitosan itself satisfies the Pool-Frenkel Effect, an I-V specific curve, with a thin film under $20{mu}m$, and demonstrates production possibility for a living body sensors solely with the thin film. Furthermore, it enables production possibility for EML of organic EL device(Emitting Layer) with liquid Green light emitting and Blue light emitting as a result of synthesis with phosphor material.

  • PDF

Electrical and Optical Properties of Organic Light Emitting Devices Using Blue Fluorescent and Orange Phosphorescent Materials (청색형광재료와 황색인광 재료를 이용한 OLEDs의 전기 및 광학적 특성)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.155-155
    • /
    • 2010
  • We have investigated organic light-emitting devices by doping phosphorescent orange and fluorescent blue emitters into the separate layers of single host. The electroluminescence spectra and current efficiency were strongly dependent on the location of each doped layers. The luminance-voltage (L-V) characteristics of the device2 (ITO/Hole Transport Layer/Orange Phosphorescent emissive layer/Blue Fluorescent emissive layer/Electron Transport Layer/liF/Al) showed the maximum current efficiency of 19.5 cd/A.

  • PDF

Performance Enhancement of Organic Light-emitting Diodes with an Electron-transport Layer of Bathocuproine

  • Honga, Jin-Woong;Guo, Yi-Wei;Shin, Jong-Yeol;Kim, Tae Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.37-40
    • /
    • 2016
  • Performance enhancement of organic light-emitting diodes (OLEDs) is investigated in a device structure of ITO/TPD/Alq3/LiF/Al and ITO/TPD/Alq3/BCP/LiF/Al. Here, bathocuproine (BCP) is used as an electron-transport layer. Current density-voltage-luminance characteristics of the OLEDs show that the performance of the device is better with BCP layer than without BCP layer. The current density, luminance, luminous efficiency, and external-quantum efficiency are improved by approximately 22%, 50%, 2%, and 18%, respectively. Since the BCP layer lowers the electron energy barrier, electron transport is facilitated and the movement of hole is blocked as the applied voltage increases. This results in an increased recombination rate of holes and electrons.

Study of OLED luminescence efficiency by electron Injection layer change (유기발광 소자의 전자 주입층 두께 변화에 따른 발광효율 연구)

  • Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.555-558
    • /
    • 2004
  • The efficiency of electron injection from the cathode is strongly dependent on the thickness of the LiF buffer-layer. We used LiF to electron Injection layer. We compared characteristics of organic light emitting device changing LiF thin film thickness from 1.0 m to 10.0 nm. Experiment result, we found that LiF thickness has the optimized electrical characteristics in 3.0 m. In this paper, we did research about electrical characteristics of organic light emitting device by LiF thickness change using method numerical analysis method. We proved adequate experimental results that compare results of numerical analysis, and come out through an experiment results is validity.

  • PDF

Effects of PEDOT:PSS Buffer Layer and Cathode in a Device Structure of $ITO/PEDOT:PSS/TPD/Alq_3/Cathode$ ($ITO/PEDOT:PSS/TPD/Alq_3/Cathode$ 소자 구조에서 PEDOT:PSS 층과 음전극의 영향)

  • Kim, S.K.;Chung, D.H.;Lee, H.D.;Oh, H.S.;Cho, H.N.;Lee, W.J.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1003-1006
    • /
    • 2003
  • We have investigated the effect of hole-injection buffer layer and cathodes in organic light-emitting diodes u sing poly (3,4-ethylenedioxythiophene) : poly (stylenesulfonate) (PEDOT: PSS) in a device structure of $ITO/PEDOT:PSS/TPD/Alq_3/Cathode$. Polymer PEDOT:PSS buffer layer was made using spin casting method. Current-voltage, luminance-voltage characteristics and efficiency of device were measured at room temperature with a variation of cathode materials. The device with LiF/Al cathode shows an improvement of external quantum efficiency approximately by a factor of ten compared to that of Al cathode only device. Our observation shows that the energy barrier-height in cathode side is important in improving the efficiency of the organic light-emitting diodes.

  • PDF

The study on the characteristics of organic light emitting devices using Ir (Ir 착화합물을 이용한 유기발광소자의 특성연구)

  • 김준호;표상우;정래영;하윤경;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.214-217
    • /
    • 2002
  • The internal quantum efficiency of organic light emitting devices(OLEDs) using fluorescent organic materials is limited within 25% because of the triplet excitons which can hardly emit light. So there has been considerable interest in finding ways to obtain light emission from triplet excitons. One approach has been to add phosphorescent compounds to one of the layers in OLEDs. Then triplet excitons can transfer to these phosphorescent molecules and emit light. In this study, multilayer OLEDs with phosphorescent emitter, Iridium complexes were prepared. The devices with a structure of ITO/TPD/Ir complex doped in the host material/Alq3/Li:Al/Al were fabricated, and its electrical and optical characteristics were studied. Using various Ir complexes and the host materials, we fabricated several devices and investigated the device characteristics.

  • PDF