• Title/Summary/Keyword: Organic Form

Search Result 988, Processing Time 0.027 seconds

Determination of Flunixin and 5-Hydroxy Flunixin Residues in Livestock and Fishery Products Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

  • Dahae Park;Yong Seok Choi;Ji-Young Kim;Jang-Duck Choi;Gui-Im Moon
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.873-884
    • /
    • 2024
  • Flunixin is a veterinary nonsteroidal anti-inflammatory agent whose residues have been investigated in their original form within tissues such as muscle and liver. However, flunixin remains in milk as a metabolite, and 5-hydroxy flunixin has been used as the primary marker for its surveillance. This study aimed to develop a quantitative method for detecting flunixin and 5-hydroxy flunixin in milk and to strengthen the monitoring system by applying to other livestock and fishery products. Two different methods were compared, and the target compounds were extracted from milk using an organic solvent, purified with C18, concentrated, and reconstituted using a methanol-based solvent. Following filtering, the final sample was analyzed using liquid chromatography-tandem mass spectrometry. Method 1 is environmentally friendly due to the low use of reagents and is based on a multi-residue, multi-class analysis method approved by the Ministry of Food and Drug Safety. The accuracy and precision of both methods were 84.6%-115% and 0.7%-9.3%, respectively. Owing to the low matrix effect in milk and its convenience, Method 1 was evaluated for other matrices (beef, chicken, egg, flatfish, and shrimp) and its recovery and coefficient of variation are sufficient according to the Codex criteria (CAC/GL 71-2009). The limits of detection and quantification were 2-8 and 5-27 ㎍/kg for flunixin and 2-10 and 6-33 ㎍/kg for 5-hydroxy flunixin, respectively. This study can be used as a monitoring method for a positive list system that regulates veterinary drug residues for all livestock and fisheries products.

Association between Blood Mercury and Seafood Consumption in Korean Adults: KoNEHS Cycle 4 (2018~2020)

  • Ji-Eun Oh;Tae-Hyeong Kim;Eun-Hee Lee
    • Biomedical Science Letters
    • /
    • v.30 no.1
    • /
    • pp.24-31
    • /
    • 2024
  • Mercury is a chemical pollutant widely present in the environment. Humans are generally exposed to mercury in the form of organic Hg (methylmercury) through the consumption of seafood. Koreans enjoy eating fish therefore blood mercury concentration is usually higher than in developed countries. By investigating blood mercury concentration according to the frequency of seafood consumption and sociodemographic factors, we aimed to identify recent trends in blood mercury concentration in Korean adults. This study was conducted using KoNEHS cycle 4 (2018~2020) from the National Institute Environmental Research Survey. The geometric mean concentration of blood mercury of the subjects was 2.959 (±1.018) ㎍/L, which was significantly higher in men than in women. It was observed that as the frequency of fish and shellfish consumption increased, the blood mercury concentration increased. In adjusted logistic regression, fish consumption was associated with 36.7% increased risk of blood mercury levels [Odds ratio, 1.367; 95% confidence interval (CI), 1.246~1.500], and shellfish consumption was associated with 26.5% increased risk of blood mercury levels [Odds ratio, 1.265; 95% confidence interval (CI), 1.134~1.410]. Blood mercury concentration was also found to increase as the socioeconomic level increased. In conclusion, the geometric mean concentration of blood mercury was increased compared to the one in the 3rd KoNEHS (2015~2017) and seafood consumption and socioeconomic level were still significantly associated with increasing blood mercury concentration in Korea. Therefore, it is necessary to encourage healthy seafood consumption habits and conduct continuous monitoring considering various factors to reduce blood mercury levels.

Adsorption of phosphate and mitigation of biofouling using lanthanum-doped quorum quenching beads in MBR

  • Hyeonwoo Choi;Youjung Jang;Jaeyoung Choi;Hyeonsoo Choi;Heekyong Oh;Shinho Chung
    • Membrane and Water Treatment
    • /
    • v.15 no.2
    • /
    • pp.51-57
    • /
    • 2024
  • The removal of phosphorus, especially phosphate-form phosphorus, is necessary in wastewater treatment. Biofouling induced by the quorum sensing mechanism is also a major problem in membrane bioreactor (MBR), which reduces membrane flux. This study introduces lanthanum-doped quorum quenching (QQ) beads into MBR, confirming their inhibitory effect on biofouling due to Rhodococcus sp. BH4 and their capacity for phosphorus removal through lanthanum adsorption. A batch test was conducted to access the phosphate adsorption of lanthanum-QQ (La-QQ) beads and lab-scale MBR to verify the effect of inhibition. The study aimed to identify distinctions among the MBR, QQ MBR, and La-QQ MBR. In the batch test, the phosphate removal rate increased as the volume of beads increased, while the unit volume removal rate of phosphate decreased. In the lab-scale MBR, the phosphate removal rates were below 20% in the control MBR and QQ MBR, whereas the La-QQ MBR achieved a phosphate removal rate of 74%. There was not much difference between the ammonia and total organic carbon (TOC) removal rates. Regarding the change in transmembrane pressure(TMP), 3.7 days were taken for the control MBR to reach critical pressure. In contrast, the QQ-MBR took 9.8 days, and the La-QQ MBR took 6.1 days, which confirms the delay in biofouling. It is expected that La-QQ can be used within MBR to design a more stable MBR process that regulates biofouling and enhances phosphate removal.

The Effect Analysis of Vegetation Diversity on Rice-Fish Mixed Farming System in Paddy Wetland (벼-담수어 복합생태농업이 논습지 식생다양성에 미치는 영향 분석)

  • Kong, Minjae;Kim, Changhyun;Lee, Sangmin;Park, Kwanglai;An, Nanhee;Cho, Junglai;Kim, Bongrae;Lim, Jongahk;Lee, Changwon;Kim, Hyeongsu;Nam, Hongsik;Son, Jinkwan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.398-409
    • /
    • 2018
  • Organic farming practices including loach based ecosystem-farming have been demonstrated to be effective in conjunction with rice farming to increase yield and quality. This new form of farming combines agriculture and fishery and is quickly developing into a new industry. The current study investigated the effect of rice-fish mixed farming system on the vegetation-diversity function. Vegetation within the four study sites was surveyed and analyzed based on plant taxonomy. The vegetation survey demonstrated that 127 taxa of 38 families, 100 genera, 107 species, and 20 varieties occurred within the study sites. A total of 15 plant species taxa occurred in the rice-fish mixed paddy fields with a fish habitat and did not occur in the conventional paddy field lacking fish habitat. This difference is thought to arise from differences in moisture requirements for vegetation. Life form analysis demonstrated differences in hemicryptophytes, therophytes, and hydrophytes according to fish habitat. The naturalized plants identified were also determined to be species widely distributed throughout Korea. Frequency analysis demonstrated that the rice-fish mixed paddy fields with a fish habitat had a high ratio of both obligate and facultative wetland plants relative to the conventional paddy field. Based on the study results, it is likely that vegetation-diversity will increase with environment diversity. However, no statistical significance was observed according to paddy types. Future research should aim to identify additional environmental factors, including the existence of fish habitat, habitat area, depth of fish habitat, hydrological parameters, water quality, and paddy soil environment, to enhance vegetation-diversity and biocultural diversity.

A Study on the Material and Production Method of Bronze Casting Earthen Mold - Focusing on Earthen Mold Excavated in Dongcheon-dong, Gyungju - (청동주조 토제범(土製范)의 재질과 제작기법 연구 - 경주 동천동 출토 토제범을 중심으로 -)

  • Son, Da-nim;Yang, Hee-jae
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.4
    • /
    • pp.108-125
    • /
    • 2013
  • This study examined the actual reconstruction drawing, composite mineral, particle size and property test, fine organic matters, color differences and main ingredients of the earthen mold excavated in Dongcheon-dong, Gyungju. The cross-section of the inner mold and outer mold divides into inside (1st layer) and outside (2nd layer), with organic matters mixed outside. The cross-section has been altered due to heat and form removal agent. X-ray analysis revealed that the layer was made of minerals with high transmissivity and only quartz particles were observed through a polarizing microscope. The inside of cross-section in SEM observation identified enlarged air gap, with crack developed in the center, but no changes observed on the outside. The particle size of the composites is almost the same for the inner mold and outer mold and is silt clay loam. The ratio between silt clay and silt clay loam was about 2.7:1 and 2.9:1 respectively. In the property test, the density and absorption rate of inner mold and outer mold were similar, but porosity was different, with inner mold of 27.36% and outer mold of 31.09%. The color difference of cross-section seems to have been caused by the spread of soot on the 1st layer surface for removal of form or by the covering of ink to protect the 1st layer. Composite mineral analysis revealed the same composition for the inner mold and outer mold, except for the magnetite that was detected in the inner mold alone. As for the main ingredient analysis, the average content of $SiO_2$ was 71.64% and that of $Al_2O_3$ was 14.59%. As for the sub-ingredients, $Fe_2O_3$ was 4.51%, $K_2O$ 3.06%, $Na_2O$, MgO, CaO, $TiO_2$, $P_2O_5$ and MnO was less than 2%.

Analysis on the Relation between the Morphological Physical and Chemical Properties of Forest Soils and the Growth of the Pinus koraiensis Sieb. et Zucc. and Larix leptolepis Gord by Quantification (수량화(數量化)에 의(依)한 우리나라 삼림토양(森林土壤)의 형태학적(形態学的) 및 이화학적(理化学的) 성질(性質)과 잣나무 및 낙엽송(落葉松)의 생장(生長) 상관분석(相關分析))

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.53 no.1
    • /
    • pp.1-26
    • /
    • 1981
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in sccordance with multi-variate analysis. 2. Test species, japanese larch (Larix leptolepis Gord) and the Korean white pine, (pinus koraiensis S et Z.) are plantable in extensive areas from mid to north in the temperate forest zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are little known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth, but, when Japanese larch is planted in Korean white pine site it can be hardly said that the Japanese Larch growth is good. To understand on such a difference soil factors have been studied so as to see how th soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 Japanese larch plots and 259 Korean white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analyses of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the decreasing order of weight deposit form, soil depth, soil moisture, altitude, relief, soil type, depth a A-horizon, soil consistency, content of organic matter, soil texture, bed rock, gravel content, aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency, bed rock, aspect, depth of A-horizon, soil moisture, altitude, relief, deposit form, soil depth, soil texture, gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of base saturation, organic matter, CaO, C/N ratio, effective $P_2O_5$, PH, exchangeable, $K_2O$, T-N, MgO, CEC, Total Base and Na. For the Korean white pine the influencing factors' order is effective $P_2O_5$, Total Base, T-N, Na, C/N ratio, PH, CaO, base saturation, organic matter, exchangeable $K_2O$, CEC and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of soil depth, deposit form, soil moisture, PH, relief, soil type altitude, T-N, soil consistency, effective $P_2O_5$, soil texture, depth of A-horizon, Total Base, exchangeable $K_2O$ and base saturation. For the Korean white pine the influencing factors' order is soil type, soil consistency, aspect, effective $P_2O_5$, depth of A-horizon, exchangeable $K_2O$, soil moisture, Total Base, altitude, soil depth, base saturation, relief, T-N, C/N ratio and deposit form. 7. In the multiple correlation of forest soil's physical properties larch's correlation coefficient for Japanese Larch is 0.9272 and for Korean white pine, 0.8996. With chemical properties larch has 0.7474 and Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properities are not less important than the physical properties. In the multiple correlation of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients Japanese larch needs deeper soil depth than Korean white pine and in the deposit form of colluvial and creeping soils are demanded by the larch. Moderately moist to not moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N, soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief, soil moisture, PH, N, altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variations as plantation environments. For the larch siting soil depth, deposit form, relief, soil moisture, pH, soil type, N and soil texture are indicators of good growth and for the Korean white pine they are soil type, soil consistency, effective $P_2O_5$ and exchangeable $K_2O$. In soil nutrients larch has been found out demanding more than the Korean white pine except $K_2O$, which is demanded more by the Korean white pine than Japanese larch generally. 9. Physical properties of soil has been known as affecting tree growth to the greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for the Japanese larch and the Korean white pine that have been uncertain so far could be clarified.

  • PDF

Effects of Selenium Supplying Methods on the Growth and Se Uptake of Hydroponically Grown Tomato Plants (Selenium공급방법이 수경재배 토마토의 생장과 Se 흡수에 미치는 영향)

  • Lee Cheol-Kyu;Cho Kyung-Cheol;Lee Jeong-Hyun;Cho Ja-Yong;Seo Beom-Seok;Yang Won-Mo
    • Journal of Bio-Environment Control
    • /
    • v.14 no.4
    • /
    • pp.284-288
    • /
    • 2005
  • This study was conducted to clarify the effects of supplying methods of selenium on the growth and Se uptake of hydroponically grown tomato plants. Tomato seeds (Lycopersicum esculentum Mill. cv. Momotaro T-93, Daki Seed Co.) were sown in plug tray with fifty holes, and raised for sixty days. Tomato seedlings transplanted to coco fiber slabs were supplied with the nutrient solutions adjusted to EC $2.3dS{\cdot}m^{-1}$ and pH $5.8\~6.2$ recommended by the Japanese Horticultural Experiment Station. Selenium forms used were inorganic $SeO_2$ (here in after referred to Se) and organic selenium chlenium with sugar fatty acid ester (here in after referred to chelated-Se). 10 ppm selenium solutions were treated to tomato plants with foliar applications, drenching, and foliar application plus drenching. Growth characteristics in terms of plant height, number of leaves, leaf area and chlorophyll content were significantly increased in the plot of foliar application ot Se, and in the plot of foliar application plus drenching of chelated-Se than other plots, respectively. Transported contents of selenium into the tomato fruits were highest as 0.302 ppm in the plot of foliar application plus drenching of chelated-Se. Also, it had tended to be higher in the plot of foliar application plus drenching than in the plots of foliar application or drenching in both of Se and chelated-Se. Foliar application and drenching of organic chelated-Se were effective to produce the functional tomato fruits.

Isotopic Determination of Food Sources of Benthic Invertebrates in Two Different Macroalgal Habitats in the Korean Coasts (동위원소 분석에 의한 동해와 남해 연안의 상이한 해조류 군락에 서식하는 저서무척추동물 먹이원 평가)

  • Kang, Chang-Keun;Choy, Eun-Jung;Song, Haeng-Seop;Park, Hyun-Je;Soe, In-Soo;Jo, Q-Tae;Lee, Kun-Seop
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.380-389
    • /
    • 2007
  • Stable carbon and nitrogen isotopes were analyzed in suspended particulate organic matter, macroalgae and macrobenthic invertebrates in order to determine the importance of primary organic matter sources in supporting food webs of rocky subtidal and intertidal macroalgal beds in the Korean coasts. Investigations were conducted at the inter tidal sites within Gwangyang bay, a semi-enclosed and eutrophicated bay, and the subtidal sites of the east coast, a relatively oligotrophic and open environment, in May and June 2005. Water-column suspension feeders showed more negative $\delta^{13}C$ values than those of the other feeding guilds, indicating trophic linkage with phytoplankton and thereby association with pelagic food chains. In contrast, animals of the other feeding guilds, including interface suspension feeders, herbivores, deposit feeders, omnivores and predators, displayed relatively less negative $\delta^{13}C$ values than those of the water-column suspension feeders and similar with that of macroalgae, indicating exclusive use of macroalgae-derived organic matter and association with benthic food chains. Most the macrobenthic species were considered to form strong trophic links with benthic food chains. In addition, the distribution of higher $\delta^{15}N$ values in macrobenthic consumers and macroalgae at the intertidal sites of Gwangyang Bay than those at the subtidal sites of the east coast suggests that anthropogenic nutrients may enhance the macroalgal production at the intertidal sites and in turn be incorporated into the particular littoral food web in Gwangyag Bay. These results confirm the dominant role of macroalgae in supporting rocky subtidal and intertidal food webs in the Korean coasts.

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.

Mycorrhizae, mushrooms, and research trends in Korea (균근과 버섯 그리고 국내 연구동향)

  • An, Gi-Hong;Cho, Jae-Han;Han, Jae-Gu
    • Journal of Mushroom
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Mycorrhiza refers to the association between a plant and a fungus colonizing the cortical tissue of the plant's roots during periods of active plant growth. The benefits afforded by plants from mycorrhizal symbioses can be characterized either agronomically, based on increased growth and yield, or ecologically, based on improved fitness (i.e., reproductive ability). In either case, the benefit accrues primarily because mycorrhizal fungi form a critical linkage between plant roots and the soil. The soilborne or extramatrical hyphae take up nutrients from the soil solution and transport them to the root. This mycorrhizae-mediated mechanism increases the effective absorptive surface area of the plant. There are seven major types of mycorrhizae along with mycoheterotrophy: endomycorrhizae (arbuscular mycorrhizae, AM), ectomycorrhizae (EM), ectendomycorrhizae, monotropoid, arbutoid, orchid, and ericoid. Endomycorrhizal fungi form arbuscules or highly branched structures within root cortical cells, giving rise to arbuscular mycorrhiza, which may produce extensive extramatrical hyphae and significantly increase phosphorus inflow rates in the plants they colonize. Ectomycorrhizal fungi may produce large quantities of hyphae on the root and in the soil; these hyphae play a role in absorption and translocation of inorganic nutrients and water, and also release nutrients from litter layers by producing enzymes involved in mineralization of organic matters. Over 4,000 fungal species, primarily belonging to Basidiomycotina and to a lesser extent Ascomycotina, are able to form ectomycorrhizae. Many of these fungi produce various mushrooms on the forest floor that are traded at a high price. In this paper, we discuss the benefits, nutrient cycles, and artificial cultivation of mycorrhizae in Korea.