• Title/Summary/Keyword: Organic Contaminants

Search Result 384, Processing Time 0.025 seconds

Characterization and Photocatalytic effect of ZnO nanoparticles synthesized by spray-pyrolysis method

  • Lee, Sang-Duck;Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Kang-Suk;Kim, Young-Dok;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.101-101
    • /
    • 2010
  • ZnO shows a direct band gap of 3.37eV, large exciton binding energy (~60 meV), high oxidation ability, high sensitivity to many gases, and low cost, and it has been used in various applications such as transparent electrodes, light emitting diodes (LEDs), gas sensors and photocatalysts. Among these applications ZnO as photocatalyst has considerably attracted attention over the past few years because of its high activities in removing organic contaminants generated from industrial activities. In this research, ZnO nanoparticles were synthesized by spray-pyrolysis method using the zinc acetate dihydrate as starting material at synthesis temperature of $900^{\circ}C$ with concentration varied from 0.01 to 1.0M. The physical and chemical properties of the synthesized ZnO nanoparticles were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transformation Infrared (FT-IR), and UV-vis spectroscopy. The Miller indices of XRD patterns indicate that the synthesized ZnO nanoparticles showed a hexagonal wurtzite structure. With increased precursor concentration, a primary, secondary particle sizes of ZnO nanoparticles increased by 0.8 to $1.5{\mu}m$ and 15 to 35nm, and their crystallinity was improved. Methyleneblue (MB) solution ($1{\mu}M$) as a test comtaminant was prepared for evaluating the photocatalytic activities of ZnO nanoparticles synthesized in different precursor concentration. The results show that the photocatalytic efficiency of ZnO nanoparticles was gradually enhanced by increased precursor concentration.

  • PDF

Mobility of silver nanoparticles (AgNPs) and oxidative degradation of endocrine disrupting chemicals by saturated column experiments (포화컬럼실험에서 산화공정을 적용한 내분비계 장애물질의 제거 및 은나노물질의 거동 연구)

  • Kim, Yejin;Heo, Jiyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.499-505
    • /
    • 2018
  • We applied column experiments to investigate the environmental fate and transport of silver nanoparticles(AgNPs) in fully saturated conditions of porous media. These column experiments were performed to emphasize oxidation method with $H_2O_2$ concentration and acidic conditions. The mobility of AgNPs was decreased with the increasing ionic strength that the surface charge of AgNPs(zeta potential) was neutralized with the presence of positive ions of $Na^+$. Additionally, it was also affected due to that not only more increased aggregated size of AgNPs and surface charge of quartz sand. The decreased breakthrough curves(BTCs) of bisphenol-A(BPA) and $17{\alpha}$-ethynylestradiol(EE2) were removed approximately 35.3 and 40%. This is due to that endocrine disrupting chemicals(EDCs) were removed with the release of $OH{\cdot}$ radicals by the fenton-like mechanisms from acidic and fenton-like reagent presenting. This results considered that higher input AgNPs with acidic conditions is proved to realistic in-situ oxidation method. Overall, it should be emphasized that a set of column experiments employed with adjusting pH and $H_2O_2$ concentration in proved to be effective method having potential ability of in-situ degradation for removing organic contaminants such as BPA and EE2.

Removal of Nutrients and Heavy Metals from Swine Wastewater using Chlorella vulgaris (Chlorella vulgaris를 이용한 양돈폐수 내 영양염류 및 중금속 제거)

  • Oh, Eun-Ji;Hwang, In-Sung;Yoo, Jin;Chung, Keun-Yook
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1059-1072
    • /
    • 2018
  • Bioremediation has been recognized as a suitable alternative to conventional methods of removing contaminants, and it uses fungi, bacteria and microalgae. In contrast to other organisms, microalgae are unique in that they have the ability to perform photosynthesis like plants and to utilize organic/inorganic carbon substrates, in a process called phytoremediation. Microalgae can populate a reaction site rapidly and enhance the bioremediation efficiency. In this study, Chlorella vulgaris was used to evaluate the removal potentials of the nutrients (N and P) and heavy metals (Cu and Zn) from swine wastewater. The optimum growth conditions for Chlorella vulgaris and the removal potentials of N, P, Cu, and Zn from synthetic wastewater using Chlorella vulgaris were investigated. Based on the results, the applicability of this microalga to on-site wastewater treatment was examined. Optimal growth conditions for Chlorella vulgaris were established to be $28^{\circ}C$, a pH of 7, and light and dark cycles of 14:10 h. As the concentrations of the nutrients were increased, the efficiencies of N and P removal efficiencies by Chlorella vulgaris were decreased in the single and binary mixed treatments of the nutrients, respectively. Further, the efficiencies of Cu and Zn removal also decreased as the heavy metals concentrations added were increased, both in the single and binary mixed treatments. In addition, the efficiency of Cu removal was higher than that of Zn removal. Our results indicate that Chlorella vulgaris could be used in treatment plants for the removal of nutrients and heavy metals from swine wastewater.

Applications of Enzyme Immobilized Membranes: A Review (효소 고정화막의 응용에 대한 총설)

  • Ryu, Junghyun;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.393-403
    • /
    • 2021
  • Enzymes are important class of catalyst for biotransformation. Stability and reusability of enzymes during the catalysis process is a key issue. Activity of enzyme can be enhanced by its immobilization on a suitable substrate by creation of specific microenvironment. A variety of membranes has been used as substrate due to the biocompatibility and simpler method to tune hydrophilicity/hydrophobicity property of the membrane surface. In this review, polymer membranes including cellulose, polyacrylonitrile (PAN), polydimethylsiloxane (PDMS), polyvinylidene fluoride (PVDF), polyethersulfone (PES) are introduced and discussed in detail. Biodegradation of organic contaminants by immobilized enzyme is an environmental friendly process to reduce the contamination of environment in pharmaceutical company and textile industries. The controlled hydrolysis of oil can be performed in enzyme immobilized membrane bioreactor (EMBR), resulting in reducing carbon emission and reduced environmental pollution. Bioethanol and biodiesel are considered alternative fossil fuels that can be prepared in EMBR.

Filtration Efficiency of Granular Activated Carbons to Polydisperse Ultrafine Particles through the Surface Adsoprtion (그래뉼 타입 활성탄 필터의 100 나노 미만 다분산 초미세먼지 표면흡착 제거 효율 연구)

  • Cho, Kyungil;Kang, Giwon;Shin, Jiyoon;Kim, Changhyuk
    • Particle and aerosol research
    • /
    • v.18 no.3
    • /
    • pp.79-86
    • /
    • 2022
  • Many commercial air purifiers currently have deployed granular activated carbon (GAC) filters for removing volatile organic compounds in the indoor air. GACs are generally used to remove gaseous contaminants in the air through adsorption by the inner surfaces of pores. In addition, airborne particles can be also filtered by the surface adsorption of the GACs, which can improve the life-time of the particulate filters. In this study, the filtration efficiency of GACs to ultrafine particles through surface adsorption was investigated at different volume flow rates by deploying a continuous particle filtration system. The polydisperse sodium chloride (NaCl) particles were generated by a set of an atomizer and a diffusion dryer, and then mixed with particle-free air at different volume flow rates. The penetration of ultrafine particles and pressure drop for each experimental condition were measured to figure out the effect of the volume flow rate on the surface adsoprtion of the GACs to particles, ~ 2 mm. The particle filtration efficiency of the GACs decreased as the volume flow rate increased from 4 to 14 lpm. However, the 5 times thicker GAC filter layer decreased the penetration of ultraparticles than a preious study. The filtration efficiency of the single granule was also higher than the previous result in the literature with smaller granule filter materials.

Evaluation of Efficiency of SVE from Lab-scale Model Tests and Numerical Analysis (실내모형시험과 수치해석을 통한 SVE의 효율성 평가)

  • Suk, Heejun;Seo, Min Woo;Ko, Kyung-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.137-147
    • /
    • 2008
  • Soil Vapor Extraction (SVE) has been extensively used to remove volatile organic compounds (VOCs) from the vadoze zone. In order to investigate the removal mechanism during SVE operation, laboratory modeling experiments were carried out and tailing effect could be observed in later stage of the experiment. Tailing effect means that removal rate of contaminants gets significantly to decrease in later stage of SVE operation. Also, mathematical model simulating the tailing effect was used, which considers rate-limited diffusion in a water film during mass transfer among gas, liquid, and solid phases. Measurement data obtained through the experiment was used as input data of the numerical analyses. Sensitivity analysis was performed to examine the effect of each parameter on required time to reach final target concentration. Finally, it was found that the concentration in the soil phase decreased significantly with a liquid and gas diffusion coefficient larger, actual path length shorter, and water saturation smaller.

Effect of Metal Ion on the Bentonite Modified with Cationic Surfactant (양이온성 계면활성제를 이용한 유기 벤토나이트의 합성시 금속 이온의 첨가 영향)

  • Kim, Soo-Hong;Park, Jae-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.677-682
    • /
    • 2006
  • Dodecyldimethylethylammonium (DDDEA), a cationic surfactant, and aluminum metal ions were used with bentonite to synthesize to synthesize an improved organo bentonite. Among three different synthesis procedure for organo bentonites, aluminium-pillared bentonite showed the highest DDDEA sorption, which indicated that aluminium-pillared organo bentonite would exhibit the highest sorption capacity for organic contaminants. Aluminium pillared organo bentonite also showed a high sorption capability for phosphorus, while it did not exhibit strong sorption for nitrate. In the meantime, more desorption was observed with aluminium-pillared organo bentonite than ordinary organo bentonites.

Adsorption process efficiency of activated carbon from date pits in removing pollutants from dye wastewater

  • A. Ahsan;I.K. Erabee;F.B. Nazrul;M. Imteaz;M.M. El-Sergany;S. Shams;Md. Shafiquzzaman
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.163-173
    • /
    • 2023
  • The presence of high amounts of organic and inorganic contaminants in textile wastewater is a major environmental concern. Therefore, the treatment of textile wastewater is an urgent issue to save the aquatic environment. The disposal of large quantities of untreated textile wastewater into inland water bodies can cause serious water pollution. In this study, synthetic dye wastewater samples were prepared using orange dye in the laboratory. The synthetic samples were then treated by a batch adsorption process using the prepared activated carbon (AC) from date pits. The wastewater parameters studied were the pH, total dissolved solids (TDS), total suspended solids (TSS), electrical conductivity (EC) and salinity. The activated adsorption process showed that the maximum removal efficiencies of electric conductivity (EC), salinity, TDS and TSS were 65%, 92%, 89% and 90%, respectively. The removal efficiencies were proportional to the increase in contact time (30-120 min) and AC adsorbent dose (1, 3 and 5 g/L). The adsorption profile indicates that 5 g/L of adsorbent delivers better results for TDS, EC, TSS and salinity at contact time of 120 min. The adsorption characteristics are better suited to the pseudo-second-order kinetic model than to the pseudo-first-order kinetic model. The Langmuir and Freundlich isotherms were well suited for describing the adsorption or contact behavior of EC and TSS within the studied system.

A Study of the Utilization of Feldspathic Sand as a Fortified Functional Filtering Material for Water Purification (고 기능성 수질 정화 여과재로서의 장석질 모래 활용연구)

  • 고상모;송민섭;홍석정
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.283-293
    • /
    • 2003
  • Domestic water treatment plants operate the rapid and slow filtering system using the filtering sands. Most of them are composed of beach sands, which have less sorption capacity of heavy metals as well as organic contaminants. Therefore, the development of fortified functional filtering materials with high removal capacity of organic and inorganic contaminants is needed to prevent the unexpected load of contaminated source water. This study aims to test the hydrochemical change and the removing capacity of heavy metals such as Cd, Cu, and Pb on the Jumunjin sand, feldspathic sand(weathering product of Jecheon granite), feldspathic mixing sand I(feldspathic sand mixed with 10 wt% zeolite), and feldspathic mixing sand II (feldspathic sand mixed with 20 wt% zeolite). Feldspathic mixing sand I and II showed the eruption of higher amounts of cations and anions compared with the Jumunjin sand and feldspathic sand. They also showed higher eruption of Si, Ca, $SO_4$ ions than that of Al, $NO_3$, Fe, K, Mg, and P. Feldspathic mixing sand II caused higher eruption of some cations of Na, Ca, Al than feldspathic mixing sud I, which is the result controlled by the dissolution of zeolite. Jumunjin sand and feldspathic sand showed very weak sorption of Cd, Cu and Pb. In contrast to this, feldspathic mixing sand I and II showed the high sorption and removal capacity of the increasing order of Cd, Cu and Pb. Feldspathic mixing sand II including 20% zeolite showed a fortified removal capacity of some heavy metals. Therefore, feldspathic mixing sand mixed with some contents of zeolite could be used as the fortified filtering materials for the water filtering and purification in the domestic water treatment plants.

Assessment of the Wetland Soil Development in Constructed Wetlands using the Soil Properties of a Reference Wetland (기준습지 토양특성을 활용한 인공습지의 토양발달 평가)

  • Lee, Ja-Yeon;Kang, Dae-Seok;Sung, Ki-June
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • Changes in wetland soil properties of two constructed wetlands after their constructions were compared to those of a natural wetland to determine if they could be used for the evaluation of the success of constructed wetlands and the assessment of their functions. One natural wetland as a reference wetland and two constructed wetlands(treatment wetland and experimental wetland) with different contaminant inflow characteristics were selected for this study. Major physicochemical properties of wetland soil such as soil texture, water content, pH, CEC(cation exchange capacity), organic matter content, total nitrogen, and available phosphorus were monitored to investigate the effects of inundation and accumulation of organic matters and nutrients on the wetland soil development. There was a clear difference in soil texture between the natural wetland and the constructed ones, with the high sand content in the constructed wetlands as compared to the high clay content in the natural one. Gradual increases of silt and clay contents over time were observed in the constructed wetlands. The soil of the natural wetland was higher in water content and organic matter but lower in pH than those of the constructed wetlands. The pH of the constructed wetlands reached near neutral ranges after initial increase. CEC and nutrient concentrations of the constructed wetlands seemed to be affected mainly by outside inflows of organic matter and contaminants. Concentrations of organic matter and nutrients decreased over time in the experimental wetland where surface and deep soils with different characteristics were mixed during its construction, suggesting that changes in soil properties during wetland constructions may affect the development of wetland soils or wetland biogeochemistry. This study showed that changes in physicochemical properties of soils in constructed wetlands could be used to assess the success of constructed wetlands and their functions, and also the importance of reference wetlands for the appropriate assessment.