의림지 퇴적층의 형성환경, 성인 및 형성시기를 해석하기 위하여 제천시 모산동 일대에 위치하는 의림지 일대에서 제4기 지질조사와 물리탐사를 실시하였다. 연구의 목적을 달성하기 위하여 음향측심, 호저 표층시료 및 수상시추에 의한 주상시료 채취, GPR 물리탐사, 호저 퇴적물의 입도분석, 화분분석 및 탄소연대를 측정하였다. 야외조사와 실내분석 결과, 의림지 호저 표층은 부분적으로 인위적으로 교란되거나 매립되기도 했던 흔적이 있으며, 호저의 자연구배를 따른 유수작용으로는 설명할 수 없는 굴곡부를 보이고 있다. 대부분의 호저 퇴적물은 계절적인 집중호우시에 발달하는 범람유수, 의림지 주변 교량부근 계곡과 수로들을 따라 유입되는 하천수 등에 의하여 의림지 안에 조약성 내지 부유성 입자들이 많이 유입되어 집적된 것으로 해석된다. 그리고 대부분 균질 부유물은 의림지의 중앙이나 제방이 있는 하류부에 집적되어 있다. 의림지 호저 표층에는 퇴적물의 CM 다이그램분석에서 나타나듯이 교란류나 니류작용이 발달하여 있으며 이는 의림지하부에 기반암 위에 발달하는 퇴적층으로부터 피압수가 형성되어 상승류가 작용하기 때문인 것으로 판단된다. 시추 주상치료 중에서 ER-1호공과 ER-3-1호공의 시료는 인간간섭이나 퇴적층의 교란이 적으며, 입도 분석 결과, 분급도는 불량하고, 대부분 세립질 모래와 니질물로 구성되어 있으며, 입도의 첨도와 왜도변화가 아주 다양하게 나타나고 있어, 의림지의 호저 퇴적층은 여러 번의 상이한 기작에 의한 퇴적작용이 중첩되어 형성된 퇴적층으로 해석된다. 시추주상도, 음향측심 및 GPR 물리탐사 단면과 이의 해석자료에 의하면 의림지의 퇴적층은 하류의 제방으로 갈수록 두꺼워지며, 바닥까지의 수심도 GPR 측선9에서와 같이 약 8m로 특히 깊어지는 것으로 나타났다. 한편, 의림지의 2개 시추주상시료(ER-1호공과 ER-3-1호공)에 대한 화분분석 결과, 2개의 화분대로 구분됨이 밝혀졌으며, 하부분대는 목본류 화분이 초본류보다 우점하고 있으며, 상부분대는 반대로 초본류가 목본류보가 더 우점하는 현상을 보이고 있다. 이들 화분대는 현재 습한 온대지역의 수성 혹은 수성주변 환경이 지배하는 산악이나 구릉지에서 흔히 나타나는 침엽수-낙엽활엽수의 혼합림 식생상태를 잘 대변해 주고 있는 것으로 판단된다. 끝으로, 의림지 호저 퇴적층 중에서 인위적인 교란흔적이 없는 암회색 유기질 니층에 대한 탄소연대측정 결과, 제1호공 12번 시료에서 950$\pm$40 years B.P을 얻었으며, 제3-1호공에서도 아래로 내려가면서 8, 10, 11번 시료에 대하여 500$\pm$30 years B.P, 650$\pm$30 years B.P, 800$\pm$40 years B.P의 연대측정 결과를 획득하였다. 이상과 같은 의림지 호저 퇴적층의 형성환경과 형성시기 연구를 통하여 의림지의 제방축조의 최초시기를 해석해 보면, 의림지의 제방은 적어도 과거 약 827년 전에서 866년 전에는 이미 축조되어 있었음을 알 수 있다. 과거 제천 일대에 살았던 옛사람들이 의림지 하류의 곡지중앙과 고기 충적선상지에 대한 관계용 용수조달의 필요성에 부응하여 상류부 곡지하천의 자연입지 환경을 최대한 이용하여 축조한 것으로 판단된다.
We conclude the following with air pollution data measured from city measurement net administered and managed in Gwangju for the last 7 years from January in 2001 to December in 2007. In addition, some major statistics governed by Gwangju city and data administered by Gwangju as national official statistics obtained by estimating the amount of national air pollutant emission from National Institute of Environmental Research were used. The results are as follows ; 1. The distribution by main managements of air emission factory is the following ; Gwangju City Hall(67.8%) > Gwangsan District Office(13.6%) > Buk District Office(9.8%) > Seo District Office(5.5%) > Nam District Office(3.0%) > Dong District Office(0.3%) and the distribution by districts of air emission factory ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%). That by types(Year 2004~2007 average) is also following ; Type 5(45.2%) > Type 4(40.7%) > Type 3(8.6%) > Type 2(3.2%) > Type 1(2.2%) and the most of them are small size of factory, Type 4 and 5. 2. The distribution by districts of the number of car registrations is the following ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%) and the distribution by use of car fuel in 2001 ; Gasoline(56.3%) > Diesel(30.3%) > LPG(13.4%) > etc.(0.2%). In 2007, there was no ranking change ; Gasoline(47.8%) > Diesel(35.6%) > LPG(16.2%) >etc.(0.4%). The number of gasoline cars increased slightly, but that of diesel and LPG cars increased remarkably. 3. The distribution by items of the amount of air pollutant emission in Gwangju is the following; CO(36.7%) > NOx(32.7%) > VOC(26.7%) > SOx(2.3%) > PM-10(1.5%). The amount of CO and NOx, which are generally generated from cars, is very large percentage among them. 4. The distribution by mean of air pollutant emission(SOx, NOx, CO, VOC, PM-10) of each county for 5 years(2001~2005) is the following ; Buk District(31.0%) > Gwangsan District(28.2%) > Seo District(20.4%) > Nam District(12.5%) > Dong District(7.9%). The amount of air pollutant emission in Buk District, which has the most population, car registrations, and air pollutant emission businesses, was the highest. On the other hand, that of air pollutant emission in Dong District, which has the least population, car registrations, and air pollutant emission businesses, was the least. 5. The average rates of SOx for 5 years(2001~2005) in Gwangju is the following ; Non industrial combustion(59.5%) > Combustion in manufacturing industry(20.4%) > Road transportation(11.4%) > Non-road transportation(3.8%) > Waste disposal(3.7%) > Production process(1.1%). And the distribution of average amount of SOx emission of each county is shown as Gwangsan District(33.3%) > Buk District(28.0%) > Seo District(19.3%) > Nam District(10.2%) > Dong District(9.1%). 6. The distribution of the amount of NOx emission in Gwangju is shown as Road transportation(59.1%) > Non-road transportation(18.9%) > Non industrial combustion(13.3%) > Combustion in manufacturing industry(6.9%) > Waste disposal(1.6%) > Production process(0.1%). And the distribution of the amount of NOx emission from each county is the following ; Buk District(30.7%) > Gwangsan District(28.8%) > Seo District(20.5%) > Nam District(12.2%) > Dong District(7.8%). 7. The distribution of the amount of carbon monoxide emission in Gwangju is shown as Road transportation(82.0%) > Non industrial combustion(10.6%) > Non-road transportation(5.4%) > Combustion in manufacturing industry(1.7%) > Waste disposal(0.3%). And the distribution of the amount of carbon monoxide emission from each county is the following ; Buk District(33.0%) > Seo District(22.3%) > Gwangsan District(21.3%) > Nam District(14.3%) > Dong District(9.1%). 8. The distribution of the amount of Volatile Organic Compound emission in Gwangju is shown as Solvent utilization(69.5%) > Road transportation(19.8%) > Energy storage & transport(4.4%) > Non-road transportation(2.8%) > Waste disposal(2.4%) > Non industrial combustion(0.5%) > Production process(0.4%) > Combustion in manufacturing industry(0.3%). And the distribution of the amount of Volatile Organic Compound emission from each county is the following ; Gwangsan District(36.8%) > Buk District(28.7%) > Seo District(17.8%) > Nam District(10.4%) > Dong District(6.3%). 9. The distribution of the amount of minute dust emission in Gwangju is shown as Road transportation(76.7%) > Non-road transportation(16.3%) > Non industrial combustion(6.1%) > Combustion in manufacturing industry(0.7%) > Waste disposal(0.2%) > Production process(0.1%). And the distribution of the amount of minute dust emission from each county is the following ; Buk District(32.8%) > Gwangsan District(26.0%) > Seo District(19.5%) > Nam District(13.2%) > Dong District(8.5%). 10. According to the major source of emission of each items, that of oxides of sulfur is Non industrial combustion, heating of residence, business and agriculture and stockbreeding. And that of NOx, carbon monoxide, minute dust is Road transportation, emission of cars and two-wheeled vehicles. Also, that of VOC is Solvent utilization emission facilities due to Solvent utilization. 11. The concentration of sulfurous acid gas has been 0.004ppm since 2001 and there has not been no concentration change year by year. It is considered that the use of sulfurous acid gas is now reaching to the stabilization stage. This is found by the facts that the use of fuel is steadily changing from solid or liquid fuel to low sulfur liquid fuel containing very little amount of sulfur element or gas, so that nearly no change in concentration has been shown regularly. 12. Concerning changes of the concentration of throughout time, the concentration of NO has been shown relatively higher than that of $NO_2$ between 6AM~1PM and the concentration of $NO_2$ higher during the other time. The concentration of NOx(NO, $NO_2$) has been relatively high during weekday evenings. This result shows that there is correlation between the concentration of NOx and car traffics as we can see the Road transportation which accounts for 59.1% among the amount of NOx emission. 13. 49.1~61.2% of PM-10 shows PM-2.5 concerning the relationship between PM-10 and PM-2.5 and PM-2.5 among dust accounts for 45.4%~44.5% of PM-10 during March and April which is the lowest rates. This proves that particles of yellow sand that are bigger than the size $2.5\;{\mu}m$ are sent more than those that are smaller from China. This result shows that particles smaller than $2.5\;{\mu}m$ among dust exist much during July~August and December~January and 76.7% of minute dust is proved to be road transportation in Gwangju.
작물(作物)에 대한 토양(土壞)의 유효인산량(有效燐酸量)을 화학적(化學的)인 방법(方法)으로 빠르고 정확(正確)하게 검정(檢定)하는 것은 농경지(農耕地) 토양(土壤)의 화학적(化學的) 특성(特性)과 비옥도(肥沃度)를 위하여, 또는 인산시비량(燐酸施肥量)의 결정(決定)을 위하여, 또는 한편으로는 환경(環境)의 화학적(化學的) 평가(評價)와 토양성분(土壤成分)에 대한 화학적(化學的) 연구(硏究)를 위하여 요구(要求)되는 과제(課題)이다. 현재(現在) 토양(土壤)의 유효인산(有效燐酸)에 대한 화학적(化學的) 규정(規定)과 그의 측정방법(測定方法)은 여러 가지 사정(事情)에 의하여 변동(變動)되거나 다수(多數)의 상이(相異)한 방법(方法)이 제안(提案)되어 있으므로 최적(最適)의 측정방법(測定方法)을 확립(確立)하기 위하여는 토양(土壤)과 작물(作物)의 영양적(營養的) 특성(特性)을 기초(基礎)로 하여 광범위(廣範圍)의 실험적(實驗的)인 결과(結果)에서 도출(導出)되어야 할 것이다. 한국(韓國)에서의 토양유효인산(土壤有效燐酸)의 화학적(化學的) 측정방법(測定方法)은 현재(現在) 통일(統一)되어 있지 못하고 제안(提案)된 다수(多數)의 측정방법(測定方法)에 대하여 실험적(實驗的)으로 광범위(廣範圍)하게 검토(檢討)되지 못하였으므로 본(本) 연구(硏究)는 이러한 목적(目的)을 위하여 전국(全國) 다수지역(多數地域)(44점(點))의 전토양(田土壤)을 공시(供試)하여 작물재배(作物栽培)(옥수수)를 통한 인산흡수량(燐酸吸收量)을 측정(測定)하고 한편 상이(相異)한 10가지 화학적(化學的) 방법(方法)으로 분석(分析)한 결과(結果)로써 적합(適合)한 방법(方法)을 확립(確立)하고저 하였으며 현재(現在)까지의 시험결과(試驗結果)를 다음과 같이 종합(綜合)한다. 공시토양(供試土壤)의 전인산량(全燐酸量)은 533ppm으로부터 4,917ppm까지의 넓은 범위에 있었으며 유기물(有機物) 함량(含量)과 유의성(有意性)있는 정(正)의 상관(相關)을 보였다. 특이산성토(特異酸性土)와 화산회토(火山灰土)는 공(共)히 유기물함량(有機物含量)은 높았으나 전인산량(全燐酸量)은 전자(前者)는 비교적(比較的) 낮았고 후자(候者)는 매우 높았다. 추출조건(抽出條件)이 상이(相異)한 10가지 화학적(化學的) 방법(方法)으로 측정(測定)한 유효인산(有效燐酸)으로 규정(規定)되는 양(量)은 방법간(方法間)에 다소(多少)의 차이(差異)가 있었으며 1%로부터 48%의 범위(範圍)에 있었다. 각(各) 방법(方法)으로 측정(測定)한 인산량(燐酸量)을 상호비교(相互比較)한 상대치(相對値)는 다음과 같은 순위(順位)로 배열(配列)된다. $H_2O(5\;min.)\;1.0\;<\;H_2O(60min.)\;2.27\;<\;NH_4HCO_3\;5.57\;<\;NaHCO_3\;7.42\;<\;Double\;lactate\;9.71\;<\;Bray\;No.1\;12.53\;<\;Lancaster\;17.63\;<\;Nelson\;25.96\;<\;AcOH\;27.6\;<\;CAL-method\;50.27$ 토양적(土壤的) 특성(特性)의 차이(差異)로는 특이산성토(特異酸性土) 화산회토(火山灰土) 그리고 토성(土性)이 거친 토양(土壤)에서는 어느 방법(方法)으로도 측정(測定)된 인산량(燐酸量)은 매우 낮았다. 전반적(全般的)으로 토양(土壤)의 pH와 전인산(全燐酸)은 추출(抽出)되는 인산(燐酸)과 유의성(有意性)있는 정(正)의 상관(相關)을 보였으며 유기물량(有機物量)과는 Nelson법(法)$(HCl-H_2SO_4)$과 CAL법(法)에서 부(負)의 상관(相關)을 보였다. 교환성(交換性) Ca과는 특(特)히 Olsen법(法)$(NaHCO_3$추출(抽出))이 유의성(有意性)있는 상관(相關)을 보였으므로 석회질토양(石灰質土壤)에는 이 방법(方法)을 적용(適用)하는 것이 유용(有用)할듯하다. 2회(回) 연속재배(連續栽培)에 의하여 식물(植物)(옥수수)이 흡수(吸收)한 인산량(燐酸量)은 토양(土壤) 전인산량(全燐酸量)에 대비(對比)하면 매우 낮아 평균(平均) 4.05%에 불과(不過)하였으며 2차재배(次栽培)가 1차재배(次栽培)보다 평균(平均) 2배(倍) 이상의 높은 흡수(吸收)를 보였다. 각(各) 토양유효인산(土壤有效燐酸)의 측정방법(測定方法)에 의한 결과(結果)와 식물체(植物體)가 흡수(吸收)한 인산량(燐酸量)을 대조(對照)하여 한국전토양(韓國田土壤)의 유효인산량(有效燐酸量)을 화학적(化學的)으로 검토(檢討)하기 위하여 현재(現在) 널리 사용(使用)되고 있는 Lancaster법(法)보다는 Soltanpour$(NH_4HCO_3$추출(抽出))법(法), Double lactate법(法) 그리고 Bray No.1법(法)이 보다 적합(適合)할듯하나 이는 토양(土壤)의 성질(性質)과 작물(作物)의 종류(種類)를 달리한 조건(條件)에서 재검토(再檢討)하여 확정(確定)할수 있을듯하다.
고구마를 직접(直接) 탁주양조(濁酒釀造)로 사용(使用)하기 위하여 생(生) 고구마 및 절간(切干) 고구마분(粉)을 이용(利用)한 제국실험(製麴實驗), 그리고 산(酸), 알칼리, 산화(酸化)환원제, polyphenol oxidase 저해제등(等)의 처리(處理)에 의(依)한 절간(切干)고구마의 탈색실험(脫色實驗)과 알칼리 및 열처리(熱處理)에 의(依)한 생(生) 고구마의 박피실험(剝皮實驗)을 하여 다음과 같은 결과(結果)를 얻었다. 1. 생(生) 고구마를 원료(原料)로 담금한 경우에 박피(剝皮)하여 담금한 구(區)가 하지않는 구(區)에 비(比)하여 다소(多少) 높은 발효율(發酵率)을 보였고, 전체적(全體的)으로 각구(各區)에서 모두 산(酸)이 많고 알콜 생성량(生成量)이 적었으며 그 제성주(製成酒)의 색상(色相) 및 취기(臭氣)가 좋지 못하였다. 2. 절간(切干)고구마분(粉)을 원료(原料)로 담금한 경우에는 생(生)고구마로 담금한 구(區)에 비(比)하여 총산함량(總酸含量)이 적은 반면(反面)에 알콜생성량(生成量)이 훨씬 많았다. 당화보조제(糖化補助劑)로서 엿기름을 사용(使用) 구(區)보다 밀기울국(麴)을 사용(使用)한 구(區)에서 알콜의 증산(增産)을 보여 4일후(日後) 술덧의 알콜함량(含量)이 $10.5{\sim}11.4%$에 달(達)하였고 그 제성주(製成酒)는 산미(酸味)가 부족(不足)하여 제성후(製成後) 시간경과(時間經過)에 따라 점차 암색(暗色)으로 착색(着色)되어 제품(製品)으로서의 가치(價値)가 저하(低下)되었다. 3. 절간(切干)고구마분(粉)에 Neuropora sitophila 및 Aspergillus oryzae 를 접종(接種)하여 제국(製麴)한 결과(結果), 균사(菌絲)가 고르게 발육(發育)된 국(麴)을 얻었으나 이들 국(麴)으로 담금한 술덧은 알콜함량(含量)이 현저(顯著)히 낮았다. 4. 산(酸) 및 알칼리, polyphenol oxidase 저해제(沮害濟), 그리고 ether, ethanol 등(等) 유기용제(有機溶劑) 처리(處理)에 의(依)한 절간(切干)고구마의 탈색효과는 가피(加被)할 수 없었으며 공시(共時)한 산화환원제중(酸化還元劑中) $KMnO_4$가 가장 탈색효과가 있었고 염류중(鹽類中)에서는 명반 및 소(燒)명반의 효과도 다소인정(多少認定)되었다. 5. 절간(切干)고구마분(粉)에 첨수하여 가열(加熱) 호화(糊化)할 때의 흑변(黑變)에는 공존(共存)하는 pectin 및 amino 산(酸)은 별영향(別營饗)을 미치지 않으나 tannin 은 기타(其他) 착색물질(着色物質)과 함께 영향(影響)을 주었다. 6. 고구마의 박피(剝皮)에는 3% 알칼리 비등용액중(沸騰溶液中)에서 6분간(分揀) 침적(沈積)로서 효과가 없었으며 비등수중(沸騰水中)에서는 12분간(分揀) 이상(以上)의 처리를 요하였다. 이상(以上)의 결과(結果)로서 생(生)고구마 또는 절간(切干)고구마분(粉)으로 양조(釀造)하거나 이를 제국(製麴)하여 양조(釀造)하는 데는 일반적(一般的)인 담금법(法)으로서 좋은 결과(結果)를 얻을 수 없었으며 여러 가지 전처리(前處理)에 의(依)한 원료(原料)의 탈색효과도 기대(期待)할 수 없었으므로, 생(生)고구마 또는절간(切干)고구마분(粉)을 직접 원료(原料) 사용(使用)하려면 여기에 적합(適合)한 효모(酵母)와 고구마착색물질(着色物質)을 분해(分解)시키는 미생물(微生物)의 검색(檢索)에 대(對)한 연구(硏究)가 필요(必要)하겠다.
본 연구는 왕겨를 이용한 돈분 슬러리의 퇴비화시 부재료의 1회 투입과 부재료 재이용을 통해 부재료의 이용방법이 퇴비화에 미치는 영향을 구명하고 토양지지대가 있는 경우와 없는 경우를 비교함으로서 겨울철 퇴비화 시설에서 보온효과에 대한 기초자료를 얻고자 수행하였다. 본 실험에서 토양지 지대가 있는 경우의 보온효과는 기대할 수 없었으며 이를 위해서는 새로운 퇴비사의 설계가 요구되어졌다. 그 결과는 다음과 같다. 1. 부재료 1회 투입으로 퇴비화시 돈슬러리 1㎥를 퇴비화 하는데 토양지지대가 있는 경우보다 지지대 없는 경우가 왕겨 소요량이 0.31㎥, 부재료의 충전의 경우 0.45㎥를 절약할 수 있었다. 2. 부재료 1회 투입으로 퇴비화 할 때 퇴비화 4일령에 퇴적더미의 온도가 $71^{\circ}C$에 도달한 이후 43일령까지 $40^{\circ}C$에서 $65^{\circ}C$를 주기적으로 반복되었고 50일 이후에는 $48^{\circ}C$에서 $28^{\circ}C$가 유지되었다. 부재료 재충전으로 퇴비화 하는 경우 부재료의 재충전 시점마다 퇴비화의 저점온도를 높여 가는 양상을 보였다. 3. 부재료 1회 투입 퇴비화시 pH는 8.6에서 9.5 사이에서 검지되었고 왕겨 1$\textrm m^3$당 돈슬러리 0.363$\textrm m^3$과 0.537$\textrm m^3$의 사이에서 지지대 없는 경우의 pH가 급격하게 감소하는 경향을 보였으며 부재료 재충전 퇴비화시 8.35에서 10.02 사이에서 검지 되었다. 퇴비화시 전기전도도는 1.10mS/$\textrm {cm}^3$∼1.87mS/$\textrm {cm}^3$의 범위에서 변화를 보였다. 부재료 이용 방법에 따라 전기전도도는 큰 차이를 보여 주었다. 4. 부재료 1회 투입 퇴비화시 유기물 함량 변화는 왕겨 1$\textrm m^3$ 당 돈 슬러리 0.l19$\textrm m^3$에서 0.363$\textrm m^3$의 구간에서 지지대 없는 경우는 55% 수준을 유지하였으며 토양지지대가 있는 경우는 48%에서 70%의 범위를 반복하였다. 0.363$\textrm m^3$ 이후의 유기물 함량은 지지대 없는 경우나 토양지지대가 있는 경우나 점증되는 양상을 보였다. 부재료 1회 투입으로 퇴비화시의 수용성 질소 대 수용성 탄소의 비는 1과 2 사이를, 부재료 재충전 퇴비화시의 경우는 1과 3 사이를 반복하였다. 5. 부재료 1회 투입으로 퇴비화시는 왕겨 1$\textrm m^3$당 돈 슬러리 0.639$\textrm m^3$에서 토양지지대가 있는 경우의 질소, 인산, 가리의 성분은 각각 0.36%에서 2.29%로, 0.26%에서 1.41%로, 0.65%에서 2.96%로 증가하였으며 지지대 없는 경우보다는 낮게 검출되었다. 부재료 재충전 퇴비화시는 왕겨 1㎥당 돈 슬러리의 량에 따라 달라졌으며 토양지지대가 있는 경우 및 지지대 없는 경우의 질소 함량 범위는 각각 1.96%∼2.24%, 2.04%∼2.52%로 토양지 지대가 있는 경우가 지지대 없는 경우보다 낮은 함량을 유지하였다. 인산의 함량에 있어서도 토양지지대가 있는 경우의 범위가 1.12%∼1.60%인 반면 지지대 없는 경우는 1.32%∼1.82%로 나타나 토양지지대가 있는 경우가 지지대 없는 경우보다 낮은 함량을 나타냈다. 가리의 경우도 질소와 인산처럼 토양지지대가 있는 경우가 낮은 함량을 유지하였다.
겉뿌림 산지초지의 조성, 수량, 식생 및 목초품종등에 미치는 3요소(N-$P_{2}O_{5}$-$K_2$O: 0-0-0; 0-10-10; 6-15-15; 12-20-20; 24-25-20 kg/10a/year)와 소석회(0, 250kg/10g; 조성시만 시용)의 시용효과를 구명하는 10년간 시험후, 별도로 토심별 토양의 화학성(I보; pH, OM, T-N, 유효 $P_{2}O_{5}$, $P_{2}O_{5}$ 흡수계수, 석회소요량. II보: 치환성 Ca, Mg, K, Na 및 CEC, 염기포화도, 토양보존)을 조사하여 검토하였다. 1. 표상(0~15cm)의 pH가는 석회시용에도 불구하고 시험전 pH 5.12보다 약 01~0.3 정도 낮았다. 석회시용구는 4.90, 석회무시용구는 4.68로 그 차이가 경미하였으며, 3요소 시용수준이 증가할수록 pH 가는 더 낮아졌으며, 이러한 특성은 표토 상부층(0.0~7.5cm)이 더 뚜렷하였고 토심이 깊을수록 미약하였다. 전처리구 모두 매우 강한 산성(초지등급에서 불량 수준)을 보여 석회추비가 절대 필요하였다. 석회소요량은 석회 무시용구 및 3요소 시용수준이 높을수록 많았으며, 일반적으로 토심이 깊을수록 더 높았다. 2. 유기물 및 T-N 함량은 전처리구 모두 산지의 초지조성전보다 높았으며, 석회시용구가 무시용구보다 높았다. 반면에 3요소 시용수준간에는 일관성 있는 변화를 보이지 않았다. 각 처리구는 토심과 이들 함량간에는 반비례하는 경향을 보였다. 3. 유효인산의 함량은 인산시용량이 증가할수록 많아졌다. 특히 표토 상부층에 크게 집적되었으며, 토심이 깊을수록 집적량이 크게 낮아졌다. 표토 상부층(0.0~7.5cm)이 표토하부층(7.5~15.0cm)보다 약2배 높은 함량을 보였다. 표토 상부층에서 인산의 고집적량은 연간 10kg $P_{2}O_{5}$ 10a 시용수준에서는 351ppm, 25kg 시용수준에서는 697ppm 수준으로 적정함량보다 매우 높아 연차적인 감량시용이 필요함을 보여주었다. 표토(0~15m)의 인산흡수계수는 무석회구가 석회시용구보다 다소 높은 경향을 보였으며, 높은 인산시용수준에서는 상대적으로 낮은 흡수계수를 보였다. 반면에 심토에서는 불규칙적인 경향을 보였다. 4. 겉뿌림 산지초지의 특성에 따라서 석회추비의 방법, 시용량, 시용시기, 비종선택 등과 연차적인 인산의 감량시용방법 등이 연구검토되어야 할 것으로 보인다.
질소동위원소비(${\delta}^{15}N$)가 낮은 대기질소 강하물의 유입에 의해 산림 생태계 내 다양한 시료(나이테, 엽, 토양)의 ${\delta}^{15}N$ 값이 낮아지는 것으로 보고되고 있다. 하지만, 토양 미생물과 식물이 쉽게 이용할 수 있는 토양 무기태 질소의 ${\delta}^{15}N$에 대한 연구는 진행된 바 없다. 본 연구는 대기질소 강하물이 상대적으로 적은 농촌지역과 많은 공업지역에 위치한 적송 산림지역의 유기토양층과 무기토양층(0~20 cm와 20~40 cm) 중 $NH_4{^+}$과 $NO_3{^-}$의 ${\delta}^{15}N$값을 분석하여 두 지역간의 차이를 조사하였으며, 이들 ${\delta}^{15}N$ 값을 근거로 조사 지역의 질소손실 민감성을 평가하였다. 농촌지역과 공업지역에서 $NH_4{^+}$의 ${\delta}^{15}N$ 값은 각각 +8.9 ~ +24.8‰과 +4.4 ~ +13.8‰로 분포하였다.유기토양층과 무기토양층(0~20 cm)에서 두 지역간 $NH_4{^+}$의 ${\delta}^{15}N$값 차이가 나타났는데, 공업지역에서 각각4.4‰과 +13.8‰이었고, 농촌지역에서는 각각 +8.9‰과 +24.3‰로 공업지역에서 더 낮은 ${\delta}^{15}N$ 값이 나타났다.이는 공업지역에서 ${\delta}^{15}N$값이 낮은 대기 유래 $NH_4{^+}$ 유입량이 더 많았음을 의미한다. 한편, $NO_3{^-}$의 ${\delta}^{15}N$ 값은 지역간 차이가 없었는데, 이는 $NO_3{^-}$가 용탈과 탈질 등에 의해 쉽게 손실되는 과정에서 수반되는 질소동위원소 분할 효과에 의해 강하물에서 유래된 $NO_3{^-}$의 ${\delta}^{15}N$ 기여도가 낮아지기 때문으로 판단된다. 본 연구에서 관측된 무기태 질소의 ${\delta}^{15}N$ 값은 다른 지역에서 조사된 $NH_4{^+}$(-10.9 ~ +15.6‰)과 $NO_3{^-}$(14.8 ~ +5.6‰)의 ${\delta}^{15}N$ 값보다 매우 높은데, 이는 본 연구지역에서 토양 질소 손실 가능성이 높음을 보여준다. 이상의 연구 결과에 의하면 산림토양의 무기태 질소 중 $NO_3{^-}$보다 $NH_4{^+}$이 질소공급원(대기 질소 강하)에 대한 ${\delta}^{15}N$ 정보를 보다 잘 반영하는 것으로 판단된다.
본(本) 연구(硏究)는 굴참나무의 생장인자(生長因子) (흉고직경(胸高直徑), 수고(樹高), 흉고단면적(胸高斷面績) 및 간재적(幹材積))와 삼림환경(森林環境) 및 토양(土壤)의 이화학적(理化學的) 인자(因子)와의 관계(關係)를 분석(分析)하여 임지(林地)의 생산력(生産力)을 추정(推定)하고, 적지선정(適地選定) 기준(基準)을 설정(設定)하는데 그 목적(目的)이 있다. 이 때 고려(考慮)된 인자(因子)는 삼림환경인자(森林環境因子)로 령급(齡級) 외(外) 19개(個) 토양(土壤)의 이화학적(理化學的) 인자(因子)로 토양산도(土壤酸度) 외(外) 11개(個), 총(總) 32개(個) 인자(因子)이다. 경북(慶北)과 충북지방(忠北地方)에서 선정(選定)된 이들 생장인자(生長因子)와 삼림환경인자(森林環境因子)는 99개(個)의 표준지(標準地)를 대상(對象)으로 조사(調査)되었다. 여기에서 채택(採擇)된 인자(因子)는 이산변수(離散變數)와 연속변수(連續變數)이다. 각각의 인자(因子)를 3~4개(個)의 계급(階級)으로 분류(分類)하여, 총(總) 110개(個)의 계급(階級)으로 구분(區分)하였다. 그리고 각 계급(階級)을 별개(別個)의 독립변수(獨立變數)로 하였다. 즉 이는 의사변수(擬似變數)(dummy variable)로 하여 그의 값을 1 혹은 0으로 놓았다. 각 인자(因子)의 첫 계급(階級)은 통계학적(統計學的) 고려(考慮) 때문에 정규방정식(正規方程式)에서 제외(除外)시켰다. 먼저 4개(個)의 굴참나무 생장인자(生長因子)와 110개(個)의 계급(階級)과의 관계(關係)를 회귀분석(回歸分析)하였다. 다음으로 4개(個)의 생장인자(生長因子)와 32개(個)의 독립변수(獨立變數)간의 편상관계수(偏相關係數)를 계산(計算)하였다. 마지막으로 계급간(階級間)의 범위(範圍)를 구(求)하기 위하여 상대점수(相對點數)를 추정(推定)하였다. 이와 같이 통계분석(統計分析)한 결과(結果)를 요약(要約)하면 다음과 같다. 1) 임목생장인자(林木生長因子)와 삼림환경인자(森林環境因子)와의 관계(關係)를 분석(分析)한 결과(結果), 수고(樹高)를 종속변수(從屬變數)로 하는 것이 추정율(推定率)이 가장 높았다. 그러므로 생장인자(生長因子) 중(中) 수고(樹高)를 임지생산력(林地生産力)의 추정기준(推定基準)으로 하는 것이 효율적(効率的)이라 사료(思料)된다. 2) 입목지(立木地)의 생산력(生産力)은 전체(全體) 삼림환경인자(森林環境因子)에 의하여, 그리고 무입목지(無立木地)는 토양(土壤)의 이화학적(理化學的) 인자(因子)에 의하여 추정(推定)할 수 있다. 3) 전체(全體)의 임목생장인자(林木生長因子)에 공통(共通)으로 크게 관여(關與)하는 인자(因子)는 령급(齡級), 유효토탐(有効土探), 임목밀도(林木密度), 모암(母岩), 위도(緯度), 토양습도(土壤濕度) 등으로서, 이들 인자(因子)의 양부(良否)가 곧 적지적수(適地適樹)의 기준(基準)이 될 수 있다. 4) 임목생장(林木生長)에 대한 계급간(階級間)의 상대점수차(相對點數差)가 공통(共通)으로 큰 인자(因子)는 모암(母岩), 위도(緯度), 전질소함량(全窒素含量), 령급(齡級), 유효토탐(有効土探), 토양습도(土壤濕度), 유기질함량(有機質含量) 등으로서 이들 인자(因子)의 계급(階級)에 따라 적지적수(適地適樹)를 선정(選定)하여야 할 것으로 사료(思料)된다.
주택용 소형 퇴비화용기에 의한 부엌쓰레기의 퇴비화 가능성을 검토하기 위하여 두가지 용기(Type 1과 Type 2)를 제작하여 실험실 실험을 통하여 조사하였다. 두 용기의 구조는 같으나 차이점은 Type 1은 보온을 하였고 Type 2는 보온을 하지 않았다. 겨울철 실험을 통하여 Type 2는 우리나라의 기후 여건에 사용이 불가능한 것으로 판단되어 봄철 및 여름철 실험에서 제외하였다. 따라서 Type 1에 대한 계절 실험결과를 요약하면 다음과 같다. 1) 퇴비화기간 중 상승한 최고온도는 봄철 $58^{\circ}C$, 여름철 $57^{\circ}C$, 겨울철 $41^{\circ}C$였다. 따라서 우리나라의 기후조건에서는 반드시 보온이 필요하다는 것이 확인되었다. 2) 퇴비화원료물질의 무게는 8주 후 평균 62.5% 그리고 부피는 평균 74% 감소하였다. 3) 퇴비충의 밀도는 봄철 0.7kg/l, 여름철 0.8kg/l, 겨울철 1.1kg/l였다. 4) 수분함량은 전 퇴비화기간동안 큰 변동이 없었으며 8주 후 봄철 75.6%, 여름철 76.6%, 겨울철 76.6%였다. 5) pH는 계절에 따라 큰 차이를 보였으며 여름철에 가장 높았고, 겨울철에 가장 낮았다. 8주 후 봄철 6.13, 여름철 8.62, 겨울철 4.75였다. 6) 퇴비화시간의 경과에 따른 회분 및 유기물 함량은 유기물 분해속도가 빠를수록 증감현상이 뚜렷하였고 cellulose 및 lignin은 증가, hemicellulose 함량은 감소하였다. 7) 질소함량은 3.1-5.6%로 높았으며, 특히 여름철에 가장 높았다. 암모늄태 질소는 전반기에 증가했다가 감소하는 경향이었으며 겨울철 2주째 3,243mg/kg, 봄철 3주째 6,052mg/kg, 여름철 6주째 30,828mg/kg으로 가장 높았다. C/N율은 퇴비화시간이 경과함에 따라 감소하였으나 차이는 크지 않았다. 그러나 질산화는 봄 및 여름철에만 일어나고 겨울철에는 거의 일어나지 않았다. 8) 휘발성 및 고급유기산함량은 초기에 증가했다가 계절적으로 시기적 차이는 있으나 감소하였다. 총 유기산의 최고농도는 겨울철 2주째 10.1%, 봄철 2주째 5.8%, 여름철 4주째 15.7%였다. 9) 퇴비의 부숙도와 무관하게 각 무기성분함량은 $P_2O_5$ 0.9-4.4%, $K_2O$ 1.6-2.9%, CaO 2.4-4.6%, MgO 0.30-0.80%였다. 10) CN 및 각종 중금속함량도 퇴비화시간에 따라 큰 변화가 없었으며 각 함량범위는 계절 구분없이 CN 0.11-28.89mg/kg, Zn 24-l30mg/kg, Cu 5-219mg/kg, Cd 0.8-14.3mg/kg, Pb 7-42mg/kg, Cr ND-30mg/kg, Hg $ND-132.16\;{\mu}g/kg$이었다.
주택용 소형 퇴비화용기에 의한 부엌쓰레기의 퇴비화 가능성을 알아보기 위하여 두가지 용기 (Type 3 과 Type 4)를 제작하여 실험실 실험을 통하여 조사하였다. 두용기의 구조는 다 같이 용기의 벽을 이중으로 하였으며 Type 4는 보온을 하였고 Type 3은 보온을 하지 않았다. 겨울철 실험을 통하여 type 3은 우리나라의 기후여건에 사용이 불가능한 것으로 판단되어 봄철 및 여름철 실험에서 제외하였다. 따라서 Type 4에 대한 3 계절 실험결과를 요 약하면 다음과 같다. 1) 퇴비화기간 중 상승한 최고온도는 겨울 $43^{\circ}C$, 봄철 $55^{\circ}C$ 그리고 여릅철 $56^{\circ}C$ 였다. 2) 퇴비화원료물질의 무게는 8주 후 평균 63.3% 그리고 부피는 78% 감소하였다. 3) 퇴비층의 밀도는 겨울철 1.5kg/l, 봄철 0.8kg/1 그리고 여름철 0.8kg/1였다. 4) 수분함량은 전 퇴비화기간 동안 큰 변동이 없었으며 8주 후 겨울철 79.3%, 봄철 75.0% 그리고 여름철 70.0%였다. 5) pH 는 모두 첫주에 증가한 후 2주째에 감소하였다. 그 이후는 계절별 차이는 있었으나 계속 증가하였다. 8주 후 pH는 겨울철 6.19, 봄철 7.59 그리고 여름철에 8.69였다. 6) 퇴비화시간의 경과에 따른 회분 및 유기물함량은 분해속도가 빠를수록 증감현상이 뚜렷하였고 cellulose 및 lignin은 증가, hemicellulose 함량은 감소하였다. 7) 질소함량은 3.3-6.8%로 높았으며, 특히 여름철에 대단히 높았다. 암모늄태 질소함량은 전반에 증가했다가 감소하였으며 겨울철 8주째 2.404mg/kg, 봄철 3주째 12,400mg/kg 그리고 여름철 3주째 20,718mg/kg으로 가장 높았다. C/N율은 퇴비화기간의 경과에 따라 감소하였으나 차이는 크지 않았다. 여름철에 질산화가 가장 활발하였다. 8) 휘발성 및 고급유기산함량은 초기에 증가했다가 계절별로 시기적 차이는 있으나 감소하였다. 총 유기산의 최고농도는 겨울철 6주째 9.7%, 봄철 6주째 14.8% 그리고 여름철에는 2주째 15.8%였다. 9) 퇴비의 부숙도와는 무관하게 각 무기성분함량은 $P_2O_5$ 0.9-4.4%, $K_2O$ 1.6-2.4%, CaO 2.2-5.4% 그리고 MgO 0.30-0.61%였다. 10) CN 및 각종 중금속함량도 퇴비화시간의 경과에 따라 큰 변화가 없었으며 각 함량범위는 계절 구분없이 CN 0.21-14.55 mg/kg, Zn 11-166 mg/kg, Cu 5-65 mg/kg, Cd 0.5-10.8 mg/kg, Pb 6-35 mg/kg, Cr ND-33 mg/kg 그리고 Hg ND-302.04 g/kg 이였으며 중금속 역시 다른 무기성분들과 마찬가지로 퇴비화가 진행되면서 축적되지는 않았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.