• Title/Summary/Keyword: Ore minerals

Search Result 354, Processing Time 0.024 seconds

The Mineralogical and Geochemical Study on Korean Scheelites and its Application to the Ore Prospecting (한국산 灰重石鑛의 광물학적, 지화학적 연구 및 그의 探査에의 이용)

  • So, Chil-Sup;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.12 no.2
    • /
    • pp.79-93
    • /
    • 1979
  • Twenty five samples of the scheelite-powellite series from twelve Korean tungsten deposits of various geologic settings were studied mineralogically and geochemically. Variations in the trace-element contents of the scheelite minerals are considered in relation to geologic settings and mineralogic properties. Scheelites from ore deposits developed in similar geologic settings and under similar physicochemical conditions are characterized by specific combinations of trace elements.

  • PDF

Sulfur and Carbon Isotope Studies of Principal Metallic Deposits in the Metallogenic Province of the Taebaeg Mt. Region, Korea (태백산지구(太白山地區)의 금속광상(金屬鑛床)에 대(對)한 유황(硫黃) 및 탄소안정동위체(炭素安定同位體)에 관(關)한 연구(硏究))

  • Lee, Min Sung
    • Economic and Environmental Geology
    • /
    • v.18 no.3
    • /
    • pp.247-251
    • /
    • 1985
  • The sulfide and carbonate mineral samples for sulfur and carbon isotope studies were collected from Sangdong, Geodo, Yeonhwa, Shinyemi and Janggun mines which are distributed in the Metallogenetic Province of the Taebaeg Mt. Region. The ${\delta}S^{34}$ values of molybdenite, pyrite, arsenopyrite, pyrrhotite, chalcopyrite, sphalerite and galena from the above mines are similar and within the range of +1.66 to +6.77‰ with the exception of chalcopyrite from Geodo mine ranging from -1.58 to 1.96‰, while the sulfide minerals are dominated by positive values between +3.05 and +5.08‰. It is suggested that the major sulfur source is genetically related to the Cretaceous granitic activity. The average ${\delta}C^{13}$ values of calcite from limestone, calcite from calcite vein in ore bodies and granite, and rhodochrosite from ore bodies are -0.60‰, -2.69‰ and -6.00‰, respectively. The data on carbon isotope compositions indicate that the calcite from limestone originated in marine environment, the rhodochrosite in hydrothermal solution, and calcite from calcite vein and granite in the mixing condition of marine and hydrothermal waters. The temperatures of mineralization by the sulfur isotopic composition coexisting pyrite-pyrrhotite from Yeonhwa No.1, sphalerite-galena from Weolam and Dong-jeom of Yeonhwa No.1 mine, sphalerite-galena and pyrite-galena from Janggun mine were $273^{\circ}C$, $460{\sim}511^{\circ}C$, $561{\sim}690^{\circ}C$, $341^{\circ}C$ and $375^{\circ}C$, respectively.

  • PDF

Dispersion, Speciation and Adsorption Treatment of Heavy Metals in the Vicinity of the Shi-Heung Cu-Pb-Zn Mine (시흥 Cu-Pb-Zn 광산 주변에서의 중금속원소들의 분산 및 존재형태와 흡착처리)

  • Hwang, Ho Song;Chon, Hyo Taek
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.455-467
    • /
    • 1995
  • In order to investigate the dispersion patterns and speciations of Cu, Pb, Zn and Cd in soils, stream sediments and stream waters, geochemical studies of soil, stream sediment and stream water samples collected in the vicinity of the Shi-Heung Cu-Pb-Zn mine was carried out Cation exchange capacity measurement, size analysis, X-ray diffraction analysis and batch test were performed to select applicable soil for adsorption treatment The average content of Cu, Pb, Zn and Cd in soils collected from tailings and ore dressing plant is 1084 ppm, 2292 ppm, 3512 ppm and 29.2 ppm, respectively, and therefore, tailings and ore dressing plant site may be the major contamination sources in this study area. The mean content of Cu, Pb, Zn and Cd in stream sediments is extremely high up to 794 ppm, 1633 ppm, 2946 ppm and 25.2 ppm, respectively. Tailing particles and heavy metal ions are dispersed along the tributary system. Results from the sequential extraction analysis indicate; (1) most of Cu is bound to organic matters and sulphides, (2) fraction of Pb is mainly bound to Fe and Mn oxides. Most of Zn is largely bound to Fe and Mn oxides and residual fraction. Ion exchangeable fraction of Cd is relatively higher than those of Cu, Pb and Zn. Batch test on soils collected from the kaolinite and/or pyrophyllite mines and from the control areas was carried out to select an applicable soil samples for adsorption treatment The sample, S10, collected from the control area 2 (clay content 33.2%) shows the highest $K_d$ (distribution coefficient). Organic content in soils and several clay minerals shows relatively good correlation with $K_d$. It means that applicable soils for adsorption treatment of heavy metals show high organic and clay content.

  • PDF

Skarn Mineralization Associated with the Imog Granite in Nokjeonri Area, Yeongwol (영월 녹전리 일대 이목화강암과 관련된 스카른 광화작용)

  • Jeong, Jun-Yeong;Shin, Dongbok;Im, Heonkyung
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.215-232
    • /
    • 2020
  • The study area of Nokjeonri in Yeongwol belongs to the Taebaeksan Mineralized District. Ca and Mg skarn and related ore mineralization are developed in the Pungchon formation along the contact with the Imog granite. Ca skarn hosted in limestone mostly comprises garnet and pyroxene. Mg skarn developed in dolomite includes olivine and serpentine. Magnetite-hematite and pyrrhotite(±scheelite)-pyritegalena-sphalerite were mineralized during early and late stage, respectively. Garnet compositions are dominated by andradite series in proximal area and grossular series in distal area. Pyroxene compositions correspond to diopside series in majority. These compositional changes indicate that the fluids varied from oxidizing condition to reducing condition due to increased reaction with carbonated wall rocks as the fluids moved from the granite to a distal place. Fe2O3 and MgO concentrations of magnetite are higher in Mg skarn than those in Ca skarn, while FeO shows opposite trend. The Zn/Fe ratio of sphalerite increases with distance from the Imog granite. The δ34S values of sulfide minerals are similar to those of the Imog granite, indicating magmatic origin in ore sulfur. Mineralization was established in the order of skarn, oxide and sulfide minerals with decreasing temperature and oxygen fugacity and increasing sulfur fugacity.

Mode of Occurrence and Compositional Variation of Electrum from the Dunjeon and Baegjeon Gold Deposits (둔전(屯田) 및 백전광상(栢田鑛床)에서 산출(産出)되는 에렉트럼의 산출상태(産出狀態)와 조성변화(組成變化))

  • Lee, Chan Hee;Park, Hee-In
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.94-104
    • /
    • 1993
  • The compositional variation of electrums from gold-silver and antimony deposits in the Dunjeon Baegjeon mining area, range from 22.6 to 69.5 atom% of Ag. Ag contents in electrums vary with paragenetic sequences and associated minerals. Ag contents increase from core to margin in a single grain. Compositional range of electrums from the North ore deposits of the Dunjeon gold mine are from 22.6 to 29.5 atom% of Ag. Electrums contain Cu(0.40 to 0.55 atom%) and Bi(0.35 to 0.67 atom%). Composition of electrums from the South ore deposits of the Dunjeon gold mine vasies from 33.6 to 69.5 atom% of Ag. Cu and As contents in electrums range from 0.20 to 1.92 and from 0.70 to 1.90 atom%, respectively. As the content of Ag in electrums increase, the contents of Bi and As in electrums increase but that of Cu decrease. Electrums of the Baegjeon gold deposits contain 35.6 to 63.5 atom% of Ag, suggesting that Au contents in electrums associated with base metal sulfied be higher than those associate with Ag-minerals. Ag/Au rations in electrums increase with decreasing temperature, salinity and $fs_2$ of the mineralizing solution.

  • PDF

Copper Mineralization Around the Ohto Mountain in the Southeastern Part of Euiseong, Gyeongsangbug-Do, Republic of Korea (경북·의성 동남부 오토산 주변의 동광화작용)

  • Lee, Hyon Koo;Kim, Sang Jung;Yun, Hyesu;Song, Young Su;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.311-325
    • /
    • 1993
  • The Ohto and Tohyun copper mine which are located 4 km southeast of Euiseong, Gyeongsangbukdo, Republic of Korea show various common geologic and mineralogic features. Both copper deposits are of hydrothermal-vein types, and associated with fracture system developed during formation of the Geumseong-san caldera in late Cretaceous age. According to structures and mineral assemblages, the mineralization processes have progressed in four stages: three hypogene mineralization stages and one supergene stage. Three hypogene stages are 1) stage I forming $N5{\sim}20^{\circ}E$ veins in the Ohto mine, 2) stage II building $N5^{\circ}W{\sim}N5^{\circ}E$ veins in the Tohyun mine, and 3) stage ill bringing $N80^{\circ}E$ veins which crosscut veins of the stage II. The vein ores consist mainly of pyrite, arsenopyrite, galena and chalcopyrite, minor or trace amounts of magnetite, hematite, pyrrhotite, stannite, bournonite, boulangerite, stibnite, galenobismutite, native bismuth, marcasite, geothite and malachite. The main gangue minerals are quartz and calcite. Wallrock is altered by sericitization, chloritization, pyritization, carbonitization and argillization. Arsenic and copper contents in arsenopyrite increase from stage I to stage III (from 31.28 to 33043 atom.% As) and (from 0.04 to 0040 atom.% Co). Going from stage I to stage III Fe and Mn contents in sphalerite decreases from 12.56 to 0.44 wt.% and from 0.24 to 0.01 wt.%, respectively. The compositional data of arsenopyrite in the early stage I indicate a temperature of $420{\sim}365^{\circ}C$ and sulfur fugacity of $10^{-6.5}{\sim}10^{-8.3}$ atm. Chalcopyrite and pyrrhotite assemblage suggest that Middle stage I was deposited at below $334^{\circ}C$. The compositional data of arsenopyrite in early stage II suggest a temperature range of $425{\sim}390^{\circ}C$ and sulfur fugacity codition of $10^{-6.4}{\sim}10^{-7.3}$ atm. Based on fluid inclusion the Middle stage II was regarded as to be deposited at $420{\sim}337^{\circ}C$ (Chi et al., 1989). Referring composition of sphalerite and stannite middle-late stage II seem to be deposited around $246^{\circ}C$ and $10^{-16.5}$ atm. sulfur fugacity. The ${\delta}^{34}S$ values of sulfide minerals in the Stage I, II, III range from 4.9 to 7.6%0 and indicate igneous ore fluid origin. Based on differences in mineral assemblages, chemical composition and chemical environments of Ohto and Tohyun mine its mineralization are considered to be formed at diffent mineralization ages and by different ore fluids.

  • PDF

Ore Minerals, Fluid Inclusion and Stable Isotope Studies of the Buyeong Gold-silver Deposit, Republic of Korea (부영 금-은광상의 광석광물, 유체포유물 및 안정동위원소 연구)

  • Lee, Gill-Jae;Yoo, Bong-Chul;Lee, Jong-Kil;Chi, Se-Jung;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.513-525
    • /
    • 2009
  • The Buyeong gold-silver deposit consists of quartz veins that fill along the NS fault zone within Cretaceous Goseong formation. Mineralization can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals such as sericite, pyrite, chlorite, epidote and sulfides such as pyrite, pyrrhotite, marcasite, sphalerite, chalcopyrite, galena and galenobismutite. Supergene stage is composed of malachite, goethite, chalcocite, and sphalerite oxide. Fluid inclusion data indicate that homogenization temperatures and salinities range from 112 to $340^{\circ}C$ and from 0.2 to 7.9 wt.% NaCl, respectively. Sulfur(3.2~3.9‰) isotope composition indicates that ore sulfur was derived from mainly magmatic source as well as partly host rocks. The calculated oxygen(4.3~6.0‰) and hydrogen(-60~-64‰) isotope compositions indicate that hydrothermal fluids may be meteoric origin with some degree of mixing of another meteoric water for paragenetic time.

Spectroscopy of Skarn Minerals in Dangdu Pb-Zn Deposit and Assessment of Skarn Exploration Approaches Employing Portable Spectrometer (당두 연-아연 광상의 스카른 광물의 분광학적 특성과 휴대용 분광계의 스카른 탐사 가능성에 대한 고찰)

  • Jeong, Yong Sik;Yu, Jaehyung;Koh, Sang-Mo;Heo, Chul-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.135-147
    • /
    • 2014
  • This study analyzed spectroscopic methods for characterization of skarn minerals and sphalerite occurring in Dangdu ore deposit, and effectiveness of portable spectrometer in skarn mineral resources exploration is discussed. The spectroscopic analyses identified clinopyroxene, garnet, epidote, calcite, chlorite and sphalerite where spectral curves of clinopyroxene, garnet, epidote, and sphalerite show single mineral spectral characteristics and those of chlorite are in a mixed form with calcite and clinopyroxene. The assessment of spectroscopic analyses based on XRD analysis and microscopic observation reveals that clinopyroxene, garnet, epidote correspond well with more than 80% of detection, but sphalerite, chlorite, and calcite showed below 50% of detection rate. It is expected that skarn deposit exploration using a portable spectrometer is more effective in detection of clinopyroxene, garnet, and epidote whereas spectroscopic data of sphalerite, chlorite, and calcite needs to be utilized as a supplementary data. For the effective detection of chlorite and calcite, their content in the samples needs to be sufficient.

Ore Minerals and Genetic Environments of Quartz Veins from the Hwawon Area, Haenam, Korea (전남 화원일대의 석영맥에서 산출되는 광석광물과 이의 생성환경)

  • Yoo, Bong-Chul;Oh, Jin-Yong;Kang, Heung-Suk;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.583-595
    • /
    • 2006
  • Quartz veins from the Hwawon area are an epithermal quartz vein that is filling the fault zone within Precambrian metasedimentary rocks and Jurassic granite. Mineralization can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals(propylitic and argillic zones) such as epidote, chlorite, illite, sericite and sulfides such as pyrite, sphalerite, chalcopyrite, galena, bornite, cubanite, argentian tetrahedrite, Pb-Ag-S system and Pb-Te-S system. Supergene stage is composed of Fe-Mn oxide, Zn-Fe oxide and Pb oxide. Fluid inclusion data indicate that homogenization temperatures and salinity of hypogene stage range from $291.2^{\circ}C$ to $397.3^{\circ}C$ and from 0.0 to 9.3 wt.% eq. NaCl, respectively. It suggests that ore forming fluids were cooled and diluted with the mixing of meteoric water. Oxygen($-0.7{\sim}3.5%_{\circ}$(white quartz: $-0.7{\sim}3.5%_{\circ}$, transparent quartz: $2.4%_{\circ}$)) and hydrogen($-70{\sim}55%_{\circ}$(white quartz: $-70{\sim}55%_{\circ}$, transparent quartz: $-62%_{\circ}$)) isotopic composition indicates that hydrothermal fluids were derived from magmatic and evolved by mixing with meteoric water during mineralization.

The Skarnification and Fe-Mo Mineralization at Lower Part of Western Shinyemi Ore Body in Taeback Area (태백지역 신예미 서부광체 하부의 스카른화작용 및 철-몰리브덴 광화작용)

  • Seo, Ji-Eun;Kim, Chang-Seong;Park, Jung-Woo;Yoo, In-Kol;Kim, Nam-Hyuck;Choi, Seon-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.35-46
    • /
    • 2007
  • Shinyemi skarn deposits occur as Fe-Mo skarn type and Pb-Zn-Cu hydrothermal replacement type along the contact between Cretaceous Shinyemi granitoids and Cambro-Ordovician mixed limestone and dolostone sequence of the Choseon Supergroup. In the lower part of Western Shinyemi ore body two stages of skarn formation have been observed: the early, stage I (magnesian) skarn with Fe mineralization and the late, stage II(calcic) skarn with Mo mineralization. The stage I skarn spatially is overprinted by stage II skarn. The stage I skarn is predominantly composed of olivine, magnetite and diopside whereas, the stage II skarn is dominated by hedenbergite and garnet. The skarnification process occurred in two stages, both prograde and retrograde for stage I and stage II skarns. In stage I, the prograde skarns, mainly composed of anhydrous silicate minerals, were formed at relatively higher temperatures (about $400\;to\;550^{\circ}C$) under low $CO_{2}$ fugacity ($X_{CO2}<0.1$) conditions. On the other hand, the retrograde skarns that consisted of hydrous minerals were formed at lower temperatures (about $300\;to\;400^{\circ}C$).