• Title/Summary/Keyword: Ordinary concrete

Search Result 780, Processing Time 0.028 seconds

Physical and Mechanical Properties of Concrete Using Waste Activated Carbon (폐활성탄을 혼입한 콘크리트의 물리.역학적 성질)

  • Kang, Hyun-Soo;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.1
    • /
    • pp.21-26
    • /
    • 2009
  • This study was performed to evaluate the physical and mechanical properties of concrete using waste activated carbon. Materials used were ordinary portlant cement, crushed coarse aggregate, natural fine aggregate, waste activated carbon, and superplasticizer. The substitution ratios of waste activated carbon were 0,1,2,3,4,5,6,7,8,9 and 10%. The unit weight was decreased and water absorption ratio was increased with increasing the waste activated carbon content, respectively. When the substitution ratio of waste activated carbon was 3%, compressive strength, flexural strength and dynamic modulus of elastisity were more higher than that of the ordinary portland cement (OPC), and it was decreased with increasing the waste activated carbon content, respectively. The most effective contents of waste activated carbon was 2% in performance and 4% in practical use Accordingly, waste activated carbon can be used for concrete material.

Axial behavior of the steel reinforced lightweight aggregate concrete (SRLAC) short columns

  • Mostafa, Mostafa M.A.;Wu, Tao;Liu, Xi;Fu, Bo
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.583-598
    • /
    • 2021
  • The composite steel reinforced concrete (SRC) columns have been widely used in Structural Engineering due to their good performances. Many studies have been done on the SRC columns' performances, but they focused on the ordinary types with conventional configurations and materials. In this study, nine new types of steel reinforced lightweight aggregate concrete (SRLAC) short columns with cross-shaped (+shaped and X-shaped) steel section were tested under monotonically axial compressive load; the studied parameters included steel section ratio, steel section configuration, ties spacing, lightweight aggregate concrete (LWAC) strength, and longitudinal bars ratio. From the results, it could be found that the specimens with larger ties ratio, concrete strength, longitudinal bars ratio, and steel section ratio achieved great strength and stiffness due to the excellent interaction between the concrete and steel. The well-confined concrete core could strengthen the steel section. The ductility and toughness of the specimens were influenced by the LWAC strength, steel section ratio, and longitudinal bars ratio; in addition, larger ties ratio with smaller LWAC strength led to better ductility and toughness. The load transfer between concrete and steel section largely depends on the LWAC strength, and the ultimate strength of the new types of SRLAC short columns could be approximately predicted, referring to the codes' formulas of ordinary types of steel reinforced concrete (SRC) columns. Among the used codes, the BS-5400-05 led to the most conservative results.

Experimental and numerical studies of concrete bridge decks using ultra high-performance concrete and reinforced concrete

  • Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.407-418
    • /
    • 2022
  • This paper numerically investigates the effect of changes in the mechanical properties (displacement, strain, and stress) of the ultra-high-performance concrete (UHPC) without rebar and the reinforced concrete (RC) using steel re-bars. This reinforced concrete is mostly used in the concrete bridge decks. A mixture of sand, gravel, cement, water, steel fiber, superplasticizer, and micro silica was used to fabricate UHPC specimens. The extended finite element method as used in the ABAQUS software is applied for considering the mechanical properties of UHPC, RC, and ordinary concrete specimens. To calibrate the ABAQUS, some experimental tests have been carried out in the laboratory to measure the direct tensile strength of UHPC by the compressive-to-tensile load converting (CTLC) device. This device contains a concrete specimen and is mounted on a universal tensile testing apparatus. In the experiments, three types of mixed concrete were used for UHPC specimens. The tensile strength of these specimens ranges from 9.24 to 11.4 MPa, which is relatively high compared with ordinary concrete specimens, which have a tensile strength ranging from 2 to 5 MPa. In the experimental tests, the UHPC specimen of size 150×60×190 mm with a central hole of 75 mm (in diameter)×60 mm (in thickness) was specially made in the laboratory, and its direct tensile strength was measured by the CTLC device. However, the numerical simulation results for the tensile strength and failure mechanism of the UHPC were very close to those measured experimentally. From comparing the numerical and experimental results obtained in this study, it has been concluded that UHPC can be effectively used for bridge decks.

Evaluation of Chloride Ion Penetration Resistance of High Calcium Silicate Cement Concrete (High Sulfated Calcium Silicate 시멘트 콘크리트의 염소이온침투저항성 평가)

  • Jeong, Seok-Man;Yang, Wan-hee;Kim, Hyeon-Soo;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 2022
  • The aim of this work was to a comparative review the performance of high calcium silicate cement (HSCSC) and that of ordinary Portland cement(OPC) and blast furnace slag cement(S/C). The result of the compressive test confirmed that the compressive strength development rate of high calcium silicate cement concrete at the age of 3 days was 73.6% that of ordinary Portland cement concrete. However, at the age of 28 days, the strength development rate of high calcium silicate cement increased to about 107.0% compared to ordinary Portland cement. In addition, the test of the chloride ion penetration resistance of concrete showed that at the age of 28 days, the passed charge decreased by 73.4% and 93.0%, respectively, in blast furnace slag cement and high calcium silicate cement compared to ordinary Portland cement, and at the age of 56 days, it decreased by 79.1% and 98.3%, exhibiting excellent resistance to chloride ion penetration. In particular, it was confirmed that the rate of decrease in the passed charge with age was higher in high calcium silicate cement than in ordinary Portland cement and blast furnace slag cement.

The Effect of Mineral Admixtures' Type on the Chloride Penetration Resistance of Concrete (콘크리트의 염화물 침투저항성에 미치는 무기질 혼화재 종류의 영향)

  • Kim, Young-Jin;Kim, Dong-Seok;Yu, Jae-Kang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.802-805
    • /
    • 2004
  • This study was performed to investigate the effect of mineral admixture' type and replacement ratios on the chloride penetration resistance of concrete which was immersed in the artificial chloride solution. The chloride penetration resistance was evaluated by penetration depth and chloride diffusion coefficient. As a result, all of the mineral admixtures were effective on the chloride penetration resistance of concrete compared to ordinary portland cement only.

  • PDF

A Study on the Quality Characteristics of Concrete Using Supper Plasticizer (고성능감수제를 사용한 콘크리트의 품질특성에 관한 연구)

  • 배수호;신의균;윤상대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.132-137
    • /
    • 1993
  • The purpose of this study is to evaluate the quality characteristics of concrete using super plasticizer which is on the market within the country. For this purpose, nine kinds of super plasticizer are compared and analyzed for the slump , air content, unit weight, water-reducing percent and ratios of compressive strength with admixture content. As a result, the optimum quantity of admixture content were obtaining for ordinary and high strength concrete using super plasticizer.

  • PDF

Current Status of the Durability Study of Concrete Made with Various Cements in Korean Marine Environment (한국해양조건에서의 시멘트 종류별 콘크리트 내구 특성)

  • 박춘근;엄태형;정해문;임정렬;지정식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.163-169
    • /
    • 1997
  • The sea water resistance of cement and concrete must be considered when it is used for construction on the seashore of in the ocean. The concrete specimens using seven type of cements such as ordinary Portland cement, moderate heat Portland cement, sulfate resistance Portland cement, type A. B. C Portland blastfurnace slag cement and Portland flyash cement were immersed for 10 years in seawater in Kunsan. This study proved that moderate heat Portland cement, sulfate resistance Portland cement, type A Portland blastfurnace slag cement had higher resistance for seawater.

  • PDF

Studies on Preventive Methods Against Concrete Corrosion by Sea Water (ll) (조수에 의한 콘크리트 침식방지법에 관한 연구(ll))

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.2
    • /
    • pp.3018-3030
    • /
    • 1973
  • This study was carried out to investigate the effects of various mix designs of concrete on the compressive strengths and corrosive rates when the concretes were immersed in sea water of the West Sea, as the part of study related to durated to durability of concrete by action of the sea water. Concrete mix designs used in this study were ordinary Concrete mix, Concrete mixes with different admixtures such as fly ash, pozzolith and vinsol resin, and pozzolan concrete mix. The concrete specimens were made and cured for 7 days and 28 days in the fresh water in accordance with the Korean Standard specification for concrete. Compressive strengths of the specimens were measured after immersing the specimens for one year in fresh water and sea water which were placed indoors. The sea water used in this test was taken from the Bay of Ahsan. Corrosive rate was also tested after immersing the specimens in the same sea water and placed indoors for one year. The results obtained from the tests are summarized as follows; 1. Compressive strength of an ordinary concrete was the lowest of the various mix desings of concrete immersed both in the fresh water and the sea water. Therefore, the uses of pozzolan cement, fly ash, pozoolith and vinsol resin in mix design of concrete had and effect on increasing compressive strength. 2. Pozzolan concrete was the most effective on compressive strength in the fresh water, but it had less effect than concrete with fly ash admixture immersed in the sea water. 3. The use of fly ash admixture in mix design of concrete showed higher strength as the immersing age is longer both in fresh water and sea water than the other concretes besides pozzolan concrete, but the concretewith fly ash admixture had lower strength than pozzolan concrete in the sea water. Therefore, concrete with fly ash admixture might be better than the pozzolan concrete as far as durability of concrete to sea water was concerned. 4. The use of pozzolith admixture in mix design of concrete had less compressive strength than the use of pozzolan cement for fly ash admixture both in fresh water and sea water. However, the concrete with pozzolith admixture was much stronger than one with vinsol resin admixture in fresh water, but somewhat stronger in the sea water. 5. Though the use of vinsol resin admixture was more effective than ordinary concrete on compressive strength both in fresh water and sea water, it was the least compressive strength among the other concretes. 6. Relation between compressive strengths and absorption rates of every kind of concrete besides concrete with fly ash admixture showed a linear regression line and the compressive strength is highee as the absorption rate is lower. Concrete with fly ash admixture had extremely high strength in comparison with corresponding adsorption rates of the other concretes. 7. Corrosive appearance on the surface of concretes was not occured significantly when exposed to the sea water for one year, However, the specimens of concretes besides ordinary concrete were a little heavier than those cured in fresh water for 28 days.

  • PDF

Fresh and Hardened Properties of Structural Lightweight Concrete according to the Physical Properties of Artificial Lightweight Aggregates (인공경량골재의 물리적 특성에 따른 구조용 경량콘크리트의 프레쉬 및 경화성상)

  • Shin, Jae-Kyung;Choi, Jin-Man;Jeong, Yong;Kim, Yang-Bea;Yoon, Sang-Chun;Jee, Nam-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.377-380
    • /
    • 2008
  • Structural lightweight concrete will reduced total loads of supporting sections and foundations in archtectural and civil structures. So, the lightweight concrete can use widely for various purpose in the archtectural and civil structures. However, the performance of lightweight concrete is essentially dependent of properties of used lightweight aggregates. So, in this paper were examined the fresh and hardened properties of lightweight concrete that are used 3types of the differences properties of lightweight aggregates from lower water-ratio to higher water-ratio of concrete mixing regions. Lightweight concrete was somewhat exhibit larger slump loss than ordinary concrete. Also, the development of compressive strength was lower than ordinary concrete, however it was not showed a marked difference. According to types of lightweight aggregates, the case of synthetic lightweight aggregate are highest performance in fresh and hardened concrete, but it is should be to evaluate the structural performance testing as anchoring and bond strength with reinforcing steel bars.

  • PDF

Decision of the priority of Fire Endurance and Spatting Prevention Efficiency in High Strength Concrete at High Rise Building Work (초고층 건축공사 고강도 콘크리트 골조의 내화 및 폭렬 방지성능 중요도 선정)

  • Baek, Dae-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.804-807
    • /
    • 2008
  • Recently, with the increase of high rise and huge scale building construction, the use of high strength concrete has been increasing. High strength concrete has dense pore structure, which is susceptible to be damaged due to fire attack. For this, many researchers provide proper fire endurance method. In this paper, to provide the priority for selecting fire endurance method in high strength concrete execution, AHP technique is applied based on expert questionnaire. Fire endurance performance efficiency and ordinary performance efficiency was selected for level 1. Fire endurance performance efficiency had larger weight than ordinary one.

  • PDF