• Title/Summary/Keyword: Order of Magnitude

Search Result 1,602, Processing Time 0.032 seconds

Analysis of Shearing Characteristics for Vibration Damping Sheet Metals Bonded with Dissimilar Sheet Metals (이종 접합 제진 판재의 전단 가공 특성 분석)

  • Lee, Y.D.;Cha, Y.H.;Kim, K.P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.235-238
    • /
    • 2009
  • This study is performed to investigate shearing characteristics for vibration damping sheet metals which are bonded with dissimilar sheet metals. A shearing tool set is designed and manufactured and shearing tests with the tool set are conducted at varying the magnitude of clearance in order to analyze the shearing characteristics. The shearing characteristics are analyzed for burr height and shape of sheared faces with respect to the magnitude of clearance between the punch and the die. The shearing test results demonstrate that optimum clearance is $8{\sim}12%$ of the sheet thickness at the shearing of the vibration damping sheet metals and the shearing direction has to be controlled deriving occurrence of the burr at the thick sheet of the vibration damping sheet metals.

  • PDF

Design of Enhanced Min-Max Control using Feedforward Control

  • Im, Yoon-Tae;Song, Seong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.312-315
    • /
    • 2003
  • This paper deals with robust control problems of linear systems with matched nonlinear uncertainties. In order to handle the uncertainties, a Lyapunov min-max control approach can usually be adopted. By the way, the min-max control input is required to be switched and provokes chattering phenomena which limit the practical implementation. The magnitude of switching control input which cause chattering is dependent on the size of uncertainties. In this paper, it is shown that the magnitude of the min-max control input can be made small using a well-known disturbance observer technique and only considers the disturbance observing errors. The chattering phenomena can be reduced as small as possible by selecting a high diturbance observer gain. The simulations show that the min-max control with a disturbance observer can reduce chattering phenomena much smaller and guarantee much better robust performance rather than the one without a disturbance observer.

  • PDF

RELATIONSHIP BETWEEN FABRIC SOUND PARAMETERS AND SUBJECTIVE SENSATION

  • Yi, Eunjou;Cho, Gilsoo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.138-143
    • /
    • 2000
  • In order to investigate the relationship between fabric sound parameters and subjective sensation, each sound from 60 fabrics was recorded and analyzed by Fast Fourier transform. Level pressure of total sound (LPT), three coefficients (ARC, ARF, ARE) of auto regressive models, loudness (Z), and sharpness (Z) by Zwickers model were estimated as sound parameters. For subjective evaluation, seven sensation (softness, loudness, sharpness, clearness, roughness, highness, and pleasantness) was rated by both semantic differential scale (SDS) and free modulus magnitude estimation (FMME). As the results, the ARC values were positively proportional to both LPT and loudness (Z) values. In both of SDS and FMME, softness, clearness, and pleasantness were negatively correlated with loudness, sharpness, roughness, and highness. In regression models, softness and clearness by FMME were negatively affected by LPT뭉 ARC, while loudness, sharpness, roughness, and highness were positively expected. Regression models for pleasantness showed low values for R2.

  • PDF

A NUMERICAL STUDY ON FLOW PATTERN IN CONNECTING PASSAGEWAY OF A COMPOSITE BUILDING (복합 건축물 연결 통로에서의 기류형성에 관한 수치적 해석 연구)

  • Jeon, B.J.;Jang, B.Y.;Choi, H.G.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.81-86
    • /
    • 2010
  • In this paper, a three-dimensional numerical study on flow pattern in winter along connecting passageway of a composite building was conducted using a commercial CFD package. The incompressible Navier-Stokes equation coupled was solved by using SIMPLE algorithm in order to find steady solutions. It was shown that a upward flow is generated inside the building in winter due to buoyancy effect and that the air inside connecting passageway flows from the shorter building to the taller one regardless of the slope of the passageway. Further, it was found that the magnitude of air velocity inside connecting passageway increases as the uphill slope to the taller building increases and decreases as the downhill slope to the taller one increases, although the variation in the magnitude of fluid velocity is not substantial. Lastly, it was shown that the maximum air velocity inside connecting passageway is less than the allowable limit for all the cases considered in this study.

Current Controlled PWN Inverter Using the Real-time Digital Feedback Control (실시간 디지털 궤환 제어(Deadbeat 제어)에 의한 전류 제어형 PWM 인버터에 관한 연구)

  • Lee, Jeong-Uk;Yoo, Ji-Yoon;Ahn, Ho-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.259-267
    • /
    • 1994
  • This paper describes a current control of a single-phase PWM inverter. The proposed PWM inverter utilizes the instantaneous control method which is based on the real-time digital feedback control and the microprocessor-based deadbeat control. The deadbeat current controller is proposed to control the output current regardless of load component variations by the same method as voltage control. That is, in current control, with a very short sampling time and the successive feedback of the output current, the load current is mainly effected by the magnitude of load impedance rather than load component, the load current is mainly effected by the magnitude of load impedance rather than load component. Therefore, by treating the load as an impedance, the system's order is reduced and the instantaneous current control using the proposed deadeat controller is simplified.

Vibration Characteristics and Prediction of Railroad Track Supporting Structures (궤도지지구조물의 진동특성과 예측)

  • 황선근;엄기영;고태훈
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.51-61
    • /
    • 2000
  • In this study, field measurements of vibration on the structures supporting railroad track were performed. The vibration data obtained were analyzed to find out any correlation between its magnitude and several factors such as type of bridges, distance from the track, type of train, frequency characteristics, etc. As a result, the magnitude of vibration turned out to be the highest in the steel bridge, the concrete bridge and steel-concrete combined bridge were the next in descending order. It was also found that the dynamic characteristics of ground were the most important factors among several affecting vibration near by the railroad track. And the empirical ground vibration estimation equation for estimating ground vibration was developed. The proposed equation with respect to distances from the railroad could be easily used for the estimation of ground vibration at the residential areas nearby the track.

  • PDF

On Dynamic Contact Force Measurement of the Pantograph (판토그라프의 동적 접촉력 측정에 관한 연구)

  • 백인혁;김정수;조용현;최강윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.780-785
    • /
    • 2001
  • A method for accurate measurement of the contact force in the current collection system of the high-speed railway is developed. In order to measure the contact force with minimal modifications to the pantograph, strain gauges are attached to the bottom of the contact strip. An algorithm for deriving the magnitude and stagger of the contact force from the bending strain measurements is devised. For the sample pantograph, the static contact forces are measured to within ${\pm}$5 % error for the magnitude and ${\pm}$ 2cm error for the stagger. For dynamic contact force measurement, it is found that the contact strip can the regarded as a rigid body for the contact frequency of less than 15 ㎐.

  • PDF

Rankings for Perceived Discomfort of Static Joint Motions for Females Based on Psychophysical Scaling Method (심물리학적 방법을 이용한 정적 관절 동작에 대한 여성의 지각 불편도 Ranking)

  • Kee, Do-Hyung
    • IE interfaces
    • /
    • v.16 no.1
    • /
    • pp.85-93
    • /
    • 2003
  • The purposes of this study are to investigate perceived discomfort for static joint motions, and to propose rankings for the joint motions based on the perceived discomfort. The perceived discomfort was measured through an experiment using the free modulus method of the magnitude estimation, in which ten healthy college-age female students participated. The results showed that joints, joint motions and their levels significantly affected the perceived discomfort at $\alpha$=0.01, and that the interaction of joints and joint motion levels was also significant. Based on the experimental results, three rankings were proposed by joint and joint motions, by joints and by joint motions, which were very different from the existing ones. Especially, the proposed rankings were different from the males' published before in their order and magnitude. These rankings can be used as a valuable tool for better understanding potentially adverse effects of poor working postures in industrial sites, and as basic data for developing the postural classification scheme.

3 Directional Vibration Measurement of Wide Face Width Helical Gears (광치폭 헬리컬 기어의 3 방향 진동 측정)

  • Park, Chan-Il;Cho, Do-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.661-666
    • /
    • 2004
  • The purpose of this study is to measure the rotational vibration, radial vibration, and axial vibration for the helical gear with the wide face width relative to the whole depth. For this purpose, the experimental apparatus is designed and manufactured. The gear vibration of each direction is measured by the accelerometers attached at the gear body. As a result, meshing frequency and second harmonic component are greatly contributed to the gear vibration. As the rotational speed is increased, meshing frequency component has the more significant peak than the second harmonic one. However, the doubled torque decreases the vibration magnitude on the contrary and changes order of the vibration magnitude in each direction.

  • PDF

Experimental Study on Walking Motion by Ankle Electromyograms (족관절의 근전도를 이용한 보행운동의 실험적 연구)

  • Hong, J.H.;Chun, H.Y.;Jeon, J.H.;Jung, S.I.;Kim, J.O.;Park, K.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.934-939
    • /
    • 2011
  • This paper experimentally deals with the relationship between the ankle electromyogram(EMG) and walking motion in order to activate the ankle joint of a walking-assistance robot for rehabilitation. Based on the anatomical structure and motion pattern of an ankle joint, major muscles were selected for EMG measurements. Surface EMG signals were monitored for several human bodies at various stride distances and stride frequencies. Root-mean-squared magnitude of EMG signals were related with the walking conditions. It appeared that the magnitude of the ankle EMG signal was linearly proportional to the stride distance and stride frequency, and thus to the walking speed.