• Title/Summary/Keyword: Orbit determination

Search Result 267, Processing Time 0.024 seconds

Validation of Geostationary Earth Orbit Satellite Ephemeris Generated from Satellite Laser Ranging

  • Oh, Hyungjik;Park, Eunseo;Lim, Hyung-Chul;Lee, Sang-Ryool;Choi, Jae-Dong;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2018
  • This study presents the generation and accuracy assessment of predicted orbital ephemeris based on satellite laser ranging (SLR) for geostationary Earth orbit (GEO) satellites. Two GEO satellites are considered: GEO-Korea Multi-Purpose Satellite (KOMPSAT)-2B (GK-2B) for simulational validation and Compass-G1 for real-world quality assessment. SLR-based orbit determination (OD) is proactively performed to generate orbital ephemeris. The length and the gap of the predicted orbital ephemeris were set by considering the consolidated prediction format (CPF). The resultant predicted ephemeris of GK-2B is directly compared with a pre-specified true orbit to show 17.461 m and 23.978 m, in 3D root-mean-square (RMS) position error and maximum position error for one day, respectively. The predicted ephemeris of Compass-G1 is overlapped with the Global Navigation Satellite System (GNSS) final orbit from the GeoForschungsZentrum (GFZ) analysis center (AC) to yield 36.760 m in 3D RMS position differences. It is also compared with the CPF orbit from the International Laser Ranging Service (ILRS) to present 109.888 m in 3D RMS position differences. These results imply that SLR-based orbital ephemeris can be an alternative candidate for improving the accuracy of commonly used radar-based orbital ephemeris for GEO satellites.

Batch Unscented Transformation for Satellite Orbit Determination Using A Satellite Laser Ranging (SLR)

  • Seo, Kyoung-Seok;Park, Sang-Young;Park, Eun-Seo;Kim, Young-Rok;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.34.2-34.2
    • /
    • 2008
  • The batch least square filter is widely used for ground estimations. However, in orbit determination (OD) under inaccurate initial conditions and few measurement data the performance by the batch least square filter can lead an unstable results. To complement weak part of the batch filter, the batch unscented transformation without any linearization process is developed by ACL (Astrodynamics and Control Laboratory) in YONSEI University. In this paper, the batch unscented transformation is introduced and applied to satellite orbit determination using Satellite Laser Ranging (SLR) data. Only range of the satellite measured from ground tracking stations is used for measurement data. The results of simulation test are compared with those of the weighted batch least square filter for various initial states errors (position and velocity). Simulation results show that the batch unscented transformation is comparable or slightly superior to batch least square filter in the orbit determination.

  • PDF

Observational Arc-Length Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter in the Earth-Moon Transfer Phase Using a Sequential Estimation

  • Kim, Young-Rok;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.293-306
    • /
    • 2019
  • In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch-PM1, PM1-PM3, and PM3-LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.

TRIFLE DIFFERENCE APPROACH TO LOW EARTH ORBITER PRECISION ORBIT DETERMINATION

  • Kwon, Jay-Hyoun;Grejner brzezinska, Dorota-A.;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • A precise kinematic orbit determination (P-KOD) procedure for Low Earth Orbiter(LEO) using the GPS ion-free triple differenced carrier phases is presented. Because the triple differenced observables provide only relative information, the first epoch's positions of the orbit should be held fixed. Then, both forward and backward filtering was executed to mitigate the effect of biases of the first epoch's position. p-KOD utilizes the precise GPS orbits and ground stations data from International GPS Service (IGS) so that the only unknown parameters to be solved are positions of the satellite at each epoch. Currently, the 3-D accuracy off-KOD applied to CHAMP (CHAllenging Min-isatellite Payload) shows better than 35 cm compared to the published rapid scientific orbit (RSO) solution from GFZ (GeoForschungsZentrum Potsdam). The data screening for cycle slips is a particularly challenging procedure for LEO, which moves very fast in the middle of the ionospheric layer. It was found that data screening using SNR (signal to noise ratio) generates best results based on the residual analysis using RSO. It is expected that much better accuracy are achievable with refined prescreening procedure and optimized geometry of the satellites and ground stations.

Performance Analysis of the KOMPSAT-1 Orbit Determination Using GPS Navigation Solutions (GPS 항행해를 이용한 아리랑 1호의 궤도결정 성능분석 연구)

  • Kim, Hae-Dong;Choi, Hae-Jin;Kim, Eun-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.43-52
    • /
    • 2004
  • In this paper, the performance of the KOMPSAT-1 orbit determination (OD) accuracy at the ground station was analyzed by using the flight data. The Bayesian least squares estimation was used for the orbit determination and the assessment of the orbit accuracy was evaluated based on orbit overlap comparisons. We also compared the result from OD using GPS navigation solutions with NORAD TLE and the result from OD using range data. Furthermore, the effect of observation type and OBT drift on the accuracy was investigated. As a consequence, It is shown that the OD accuracy using only GPS position data is on the order of 5m RMS (Root Mean Square) with 4 hrs arc overlap for the 30hr arc and the GPS velocity data is not proper as a observation for the OD due to its inferior quality. The significant deterioration of the accuracy due to the critical clock bias was not founded by means of the comparison of OD result from other observations.

GPS receiver and orbit determination system on-board VSOP satellite

  • Nishimura, Toshimitsu;Harigae, Masatoshi;Maeda, Hiroaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1649-1654
    • /
    • 1991
  • In 1995 the VSOP satellite, which is called MUSES-B in Japan, will be launched under the VLBI Space Observatory Programme(VSOP) promoted by ISAS(Institute of Space and Astronautical Science) of Japan. We are now developing the GPS Receiver(GPSR) and On-board Orbit Determination System. This paper describes the GPS(Global Positioning System), VSOP, GPSR(GPS Receiver system) configuration and the results of the GPS system analysis. The GPSR consists of three GPS antennas and 5 channel receiver package. In the receiver package, there are two 16 bits microprocessing units. The power consumption is 25 Watts in average and the weight is 8.5 kg. Three GPS antennas on board enable GPSR to receive GPS signals from any NAVSTARs(GPS satellites) which are visible. NAVSATR's visibility is described as follows. The VSOP satellite flies from 1, 000 km to 20, 000 km in height on the elliptical orbit around the earth. On the other hand, the orbit of NAVSTARs are nearly circular and about 20, 000 km in height. GPSR can't receive the GPS signals near the apogee, because NAVSTARs transmit the GPS signals through the NAVSTAR's narrow beam antennas directed toward the earth. However near the perigee, GPSR can receive from 12 to 15 GPS signals. More than 4 GPS signals can be received for 40 minutes, which are related to GDOP(Geometric Dillusion Of Precision of selected NAVSTARs). Because there are a lot of visible NAVSTARs, GDOP is small near the perigee. This is a favorqble condition for GPSR. Orbit determination system onboard VSOP satellite consists of a Kalman filter and a precise orbit propagator. Near the perigee, the Kalman filter can eliminate the orbit propagation error using the observed data by GPSR. Except a perigee, precise onboard orbit propagator propagates the orbit, taking into account accelerations such as gravities of the earth, the sun, the moon, and other acceleration caused by the solar pressure. But there remain some amount of calculation and integration errors. When VSOP satellite returns to the perigee, the Kalman filter eliminates the error of the orbit determined by the propagator. After the error is eliminated, VSOP satellite flies out towards an apogee again. The analysis of the orbit determination is performed by the covariance analysis method. Number of the states of the onboard filter is 8. As for a true model, we assume that it is based on the actual error dynamics that include the Selective Availability of GPS called 'SA', having 17 states. Analytical results for position and velocity are tabulated and illustrated, in the sequel. These show that the position and the velocity error are about 40 m and 0.008 m/sec at the perigee, and are about 110 m and 0.012 m/sec at the apogee, respectively.

  • PDF

Precise Orbit Estimation of GPS using GIPSY-OASIS (GIPSY-OASIS기반 GPS 정밀 궤도 추정)

  • Ha, Jihyun;Chun, Sebum;Park, Kwan-Dong
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.535-541
    • /
    • 2019
  • In this paper, scripts for estimating the reference orbits of navigation satellites were developed and their performance was analyzed as a preliminary study for the development of the Korean GPS precise orbit determination technology. The JPL Flinn AC's data processing strategy was applied and Linux-based scripts were developed using GIPSY-OASIS. For the analysis of the accuracy of the estimated reference orbit, the precise orbit provided by the international GNSS data center was used as the truth. As a result, estimated satellite coordinates showed almost exactly same patterns and trends with the reference precise orbits, and their differences are in the range of ±2 cm. The average error between the two orbits was less than 1 cm in the 3D direction, while the standard deviation was also at 1 cm. From these, we found that the developed scripts have excellent performance in precise orbit determination.

Ground Tracking Support Condition Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter (KPLO) in Lunar Orbit

  • Kim, Young-Rok;Song, Young-Joo;Park, Jae-ik;Lee, Donghun;Bae, Jonghee;Hong, SeungBum;Kim, Dae-Kwan;Lee, Sang-Ryool
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.237-247
    • /
    • 2020
  • The ground tracking support is a critical factor for the navigation performance of spacecraft orbiting around the Moon. Because of the tracking limit of antennas, only a small number of facilities can support lunar missions. Therefore, case studies for various ground tracking support conditions are needed for lunar missions on the stage of preliminary mission analysis. This study analyzes the ground supporting condition effect on orbit determination (OD) of Korea Pathfinder Lunar Orbiter (KPLO) in the lunar orbit. For the assumption of ground support conditions, daily tracking frequency, cut-off angle for low elevation, tracking measurement accuracy, and tracking failure situations were considered. Two antennas of deep space network (DSN) and Korea Deep Space Antenna (KDSA) are utilized for various tracking conditions configuration. For the investigation of the daily tracking frequency effect, three cases (full support, DSN 4 pass/day and KDSA 4 pass/day, and DSN 2 pass/day and KDSA 2 pass/day) are prepared. For the elevation cut-off angle effect, two situations, which are 5 deg and 10 deg, are assumed. Three cases (0%, 30%, and 50% of degradation) were considered for the tracking measurement accuracy effect. Three cases such as no missing, 1-day KDSA missing, and 2-day KDSA missing are assumed for tracking failure effect. For OD, a sequential estimation algorithm was used, and for the OD performance evaluation, position uncertainty, position differences between true and estimated orbits, and orbit overlap precision according to various ground supporting conditions were investigated. Orbit prediction accuracy variations due to ground tracking conditions were also demonstrated. This study provides a guideline for selecting ground tracking support levels and preparing a backup plan for the KPLO lunar mission phase.

Orbit Determination Accuracy Improvement for Geostationary Satellite with Single Station Antenna Tracking Data

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Hae-Yeon;Kim, Hae-Dong;Kim, Jae-Hoon
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.774-782
    • /
    • 2008
  • An operational orbit determination (OD) and prediction system for the geostationary Communication, Ocean, and Meteorological Satellite (COMS) mission requires accurate satellite positioning knowledge to accomplish image navigation registration on the ground. Ranging and tracking data from a single ground station is used for COMS OD in normal operation. However, the orbital longitude of the COMS is so close to that of satellite tracking sites that geometric singularity affects observability. A method to solve the azimuth bias of a single station in singularity is to periodically apply an estimated azimuth bias using the ranging and tracking data of two stations. Velocity increments of a wheel off-loading maneuver which is performed twice a day are fixed by planned values without considering maneuver efficiency during OD. Using only single-station data with the correction of the azimuth bias, OD can achieve three-sigma position accuracy on the order of 1.5 km root-sum-square.

  • PDF

Orbit Determination of Korea Regional Navigation Satellite System Using Inter-Satellite Links and Ground Observations

  • Choi, Jungmin;Oh, Hyungjik;Park, Chandeok;Park, Sang-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.327-333
    • /
    • 2017
  • This study presents the orbit determination (OD) of a candidate Korea Regional Navigation Satellite System (KRNSS) using both inter-satellite links (ISLs) and ground observations. The candidate constellation of KRNSS is first introduced. The OD algorithm based on both ISL and ground observation is developed, and consists of three main components: dynamic model for Korean navigation satellites, measurement model for ISLs and ground observations, and the batch least-square filter for estimating OD parameters. As numerical simulations are performed to analyze the OD performances, the present study focuses on investigating the effects of ISL measurements on the OD accuracy of KRNSS. Simulation results show that the use of ISLs can considerably enhance the OD accuracy to one meter (design preference) under certain distributions of ground stations.