• Title/Summary/Keyword: Orbit and clock error

Search Result 28, Processing Time 0.025 seconds

Performance Analysis of GNSS Residual Error Bounding for QZSS CLAS

  • Yebin Lee;Cheolsoon Lim;Yunho Cha;Byungwoon Park;Sul Gee Park;Sang Hyun Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.215-228
    • /
    • 2023
  • The State Space Representation (SSR) method provides individual corrections for each Global Navigation Satellite System (GNSS) error components. This method can lead to less bandwidth for transmission and allows selective use of each correction. Precise Point Positioning (PPP) - Real-Time Kinematic (RTK) is one of the carrier-based precise positioning techniques using SSR correction. This technique enables high-precision positioning with a fast convergence time by providing atmospheric correction as well as satellite orbit and clock correction. Currently, the positioning service that supports PPP-RTK technology is the Quazi-Zenith Satellite System Centimeter Level Augmentation System (QZSS CLAS) in Japan. A system that provides correction for each GNSS error component, such as QZSS CLAS, requires monitoring of each error component to provide reliable correction and integrity information to the user. In this study, we conducted an analysis of the performance of residual error bounding for each error component. To assess this performance, we utilized the correction and quality indicators provided by QZSS CLAS. Performance analyses included the range domain, dispersive part, non-dispersive part, and satellite orbit/clock part. The residual root mean square (RMS) of CLAS correction for the range domain approximated 0.0369 m, and the residual RMS for both dispersive and non-dispersive components is around 0.0363 m. It has also been confirmed that the residual errors are properly bounded by the integrity parameters. However, the satellite orbit and clock part have a larger residual of about 0.6508 m, and it was confirmed that this residual was not bounded by the integrity parameters. Users who rely solely on satellite orbit and clock correction, particularly maritime users, thus should exercise caution when utilizing QZSS CLAS.

An Analysis on the Long-Term Variation of the GPS Broadcast Ephemeris Errors (GPS 방송궤도력 오차의 장기간 변화 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.421-428
    • /
    • 2014
  • GPS satellite positions can be obtained from the navigation message transmitted from the GPS satellite. In this paper, the accuracy of broadcast orbit and clock are analyzed by comparing with the NGA precise ephemeris. For analyzing global and local orbit errors in 2004 to 2013, GPS satellite visibilities are calculated in Korea. Local RMS of 3D orbit error and SISRE are 4 cm and 3 cm less than global RMS of 3D orbit errors and SISRE. Orbit and clock errors are calculated for each GPS satellite Block for 10 years. SISRE of Block IIA satellites are 2.8 times greater than Block IIF satellites. The correlation between orbit errors and shadow condition is analyzed. The orbit errors in shadow is 2.1% higher than that in sunlight. Correlation analysis between the orbit errors and solar/geomagnetic index shows that orbit errors has a high correlation with from 2004 to 2008. However, the correlation became low since 2009.

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.

A Short-Term Prediction Method of the IGS RTS Clock Correction by using LSTM Network

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.209-214
    • /
    • 2019
  • Precise point positioning (PPP) requires precise orbit and clock products. International GNSS service (IGS) real-time service (RTS) data can be used in real-time for PPP, but it may not be possible to receive these corrections for a short time due to internet or hardware failure. In addition, the time required for IGS to combine RTS data from each analysis center results in a delay of about 30 seconds for the RTS data. Short-term orbit prediction can be possible because it includes the rate of correction, but the clock correction only provides bias. Thus, a short-term prediction model is needed to preidict RTS clock corrections. In this paper, we used a long short-term memory (LSTM) network to predict RTS clock correction for three minutes. The prediction accuracy of the LSTM was compared with that of the polynomial model. After applying the predicted clock corrections to the broadcast ephemeris, we performed PPP and analyzed the positioning accuracy. The LSTM network predicted the clock correction within 2 cm error, and the PPP accuracy is almost the same as received RTS data.

Spatial Decorrelation of SBAS Satellite Error Corrections in the Korean Peninsular

  • Jang, Jaegyu;So, Hyoungmin;Lee, Kihoon;Park, Jun-Pyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.73-79
    • /
    • 2016
  • The characteristics of the SBAS satellite orbit and clock corrections are highly affected by the narrow network size in the Korean peninsula, which is expected to have an important role in the future dual frequency SBAS. The correlation between satellite corrections can be analyzed in terms of the spatial decorrelation effect which should be analyzed to keep the service area as wide as possible. In this paper, the characteristics of satellite error corrections for the potential Korean dual frequency SBAS were analyzed, and an optimal filter design approach is proposed to maximize the service area.

Improving Estimation Accuracy of Satellite Clock Error for GPS Satellite Clock Anomaly Detection (GPS 위성 시계 이상 검출을 위한 위성 시계 오차 추정 정확도 향상)

  • Heo, Youn-Jeong;Cho, Jeong-Ho;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.225-231
    • /
    • 2011
  • The satellite clock anomalies, one of the abnormal signal factors of the GPS satellites, can have a significant impact on the GPS measurements. However, it can be difficult to detect the anomalies of the satellites clock before the range of the satellites clock error becomes bigger than the range of the other factors, due to the measurement including error of the orbit, ionosphere delay, troposphere delay, multipath and receiver clock. In order to perform quick and accurate detection by minimization of critical range in anomalies of the satellites clock, this paper suggested a solution to detect precise anomalies of the satellites clock after application of carrier smoothing filter from measurement by dual-frequency and adjustment of errors which can be occurred by other factor and the receiver clock errors. The performance of the proposed method was confirmed by comparing to the satellite clock biases which are provided by IGS.

Determination of Geostationary Orbits (GEO) Satellite Orbits Using Optical Wide-Field Patrol Network (OWL-Net) Data

  • Shin, Bumjoon;Lee, Eunji;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.169-180
    • /
    • 2019
  • In this study, a batch least square estimator that utilizes optical observation data is developed and utilized to determine geostationary orbits (GEO). Through numerical simulations, the effects of error sources, such as clock errors, measurement noise, and the a priori state error, are analyzed. The actual optical tracking data of a GEO satellite, the Communication, Ocean and Meteorological Satellite (COMS), provided by the optical wide-field patrol network (OWL-Net) is used with the developed batch filter for orbit determination. The accuracy of the determined orbit is evaluated by comparison with two-line elements (TLE) and confirmed as proper for the continuous monitoring of GEO objects. Also, the measurement residuals are converged to several arcseconds, corresponding to the OWL-Net performance. Based on these analyses, it is verified that the independent operation of electro-optic space surveillance systems is possible, and the ephemerides of space objects can be obtained.

Accuracy Assessment of IGSO and GEO of BDS and QZSS Broadcast Ephemeris using MGEX Products

  • Son, Eunseong;Choi, Heonho;Joo, Jungmin;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.347-356
    • /
    • 2020
  • In this study, Inclined Geosynchronous Orbit (IGSO) and Geostationary Orbit (GEO) of BeiDou System (BDS) and Quasi Zenith Satellite System (QZSS) satellites positions and clock errors calculated by broadcast ephemeris and compared with Multi-GNSS Experiment (MGEX) products provided by five Analysis Centers (ACs). Root Mean Square Errors (RMSE) calculated for satellite position error. The IGSO results showed that 1.82 m, 0.91 m, 1.28 m in BDS and 1.34 m 0.36 m 0.49 m in QZSS and the GEO results showed that 2.85 m, 6.34 m, 6.42 m in BDS and 0.47 m, 4.79 m, 5.82 m in QZSS in the direction of radial, along-track and cross-track respectively. RMS calculated for satellite clock error. The IGSO result showed that 2.08 ns and 1.24 ns and the GEO result showed that 1.28 ns and 1.12 ns in BDS and QZSS respectively.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms Based on GLONASS Code-Pseudorange Measurements

  • Kim, Mi-So;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The purpose of this study is to develop precise point positioning (PPP) algorithms based on GLONASS code-pseudorange, verify their performance and present their utility. As the basic correction models of PPP, we applied Inter Frequency Bias (IFB), relativistic effect, satellite antenna phase center offset, and satellite orbit and satellite clock errors, ionospheric errors, and tropospheric errors that must be provided on a real-time basis. The satellite orbit and satellite clock errors provided by Information-Analytical Centre (IAC) are interpolated at each observation epoch by applying the Lagrange polynomial method and linear interpolation method. We applied Global Ionosphere Maps (GIM) provided by International GNSS Service (IGS) for ionospheric errors, and increased the positioning accuracy by applying the true value calculated with GIPSY for tropospheric errors. As a result of testing the developed GLONASS PPP algorithms for four days, the horizontal error was approximately 1.4 ~ 1.5 m and the vertical error was approximately 2.5 ~ 2.8 m, showing that the accuracy is similar to that of GPS PPP.