• 제목/요약/키워드: Orbit and clock error

검색결과 28건 처리시간 0.022초

Performance Analysis of GNSS Residual Error Bounding for QZSS CLAS

  • Yebin Lee;Cheolsoon Lim;Yunho Cha;Byungwoon Park;Sul Gee Park;Sang Hyun Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권3호
    • /
    • pp.215-228
    • /
    • 2023
  • The State Space Representation (SSR) method provides individual corrections for each Global Navigation Satellite System (GNSS) error components. This method can lead to less bandwidth for transmission and allows selective use of each correction. Precise Point Positioning (PPP) - Real-Time Kinematic (RTK) is one of the carrier-based precise positioning techniques using SSR correction. This technique enables high-precision positioning with a fast convergence time by providing atmospheric correction as well as satellite orbit and clock correction. Currently, the positioning service that supports PPP-RTK technology is the Quazi-Zenith Satellite System Centimeter Level Augmentation System (QZSS CLAS) in Japan. A system that provides correction for each GNSS error component, such as QZSS CLAS, requires monitoring of each error component to provide reliable correction and integrity information to the user. In this study, we conducted an analysis of the performance of residual error bounding for each error component. To assess this performance, we utilized the correction and quality indicators provided by QZSS CLAS. Performance analyses included the range domain, dispersive part, non-dispersive part, and satellite orbit/clock part. The residual root mean square (RMS) of CLAS correction for the range domain approximated 0.0369 m, and the residual RMS for both dispersive and non-dispersive components is around 0.0363 m. It has also been confirmed that the residual errors are properly bounded by the integrity parameters. However, the satellite orbit and clock part have a larger residual of about 0.6508 m, and it was confirmed that this residual was not bounded by the integrity parameters. Users who rely solely on satellite orbit and clock correction, particularly maritime users, thus should exercise caution when utilizing QZSS CLAS.

GPS 방송궤도력 오차의 장기간 변화 분석 (An Analysis on the Long-Term Variation of the GPS Broadcast Ephemeris Errors)

  • 김민규;김정래
    • 한국항행학회논문지
    • /
    • 제18권5호
    • /
    • pp.421-428
    • /
    • 2014
  • GPS 위성의 궤도는 GPS에서 송신하는 항법메시지를 이용하여 계산할 수 있는데, 본 논문에서는 미국 NGA 정밀궤도력을 실제 궤도로 가정하고 방송궤도력으로 계산한 위성궤도 및 시계와의 차이를 계산하였다. 2004년부터 2013년까지 전 세계와 한반도에서의 궤도오차를 파악하기 위해 한반도에서 관측되는 위성을 별도로 계산하였다. 그 결과 한반도에서 궤도오차가 4 cm, 의사거리 오차가 3 cm 더 작았다. 10년간 GPS 위성의 종류별 궤도오차를 계산하였는데, Block IIA와 IIF의 SISRE 오차가 2.8배 차이가 나는 것을 확인하였다. 위성의 궤도오차와 그림자조건의 상관관계를 분석하였으며 그림자 내부에 있을 때 궤도오차가 2.1% 더 크게 나타났다. 태양활동 및 지자기활동과의 상관관계 분석도 수행하였는데, 2004년부터 2008년까지는 F10.7과 궤도오차가 큰 상관관계를 가지고 있지만 2009년부터 상관관계가 낮아지는 것으로 나타났다.

의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석 (Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model)

  • 김범수;김정래;부성춘;이철수
    • 한국항행학회논문지
    • /
    • 제26권6호
    • /
    • pp.404-411
    • /
    • 2022
  • 위성항법시스템 운용 시 주요 기능은 항법위성의 궤도를 정확히 결정하여 항법메시지로 전송하는 것이다. 본 연구에서는 확장 칼만필터와 정밀동역학모델을 결합하여 항법위성의 궤도결정을 수행하는 소프트웨어를 개발하였다. IGS (international gnss service) 지상국의 실제 관측값을 사용하여 GPS (global positioning system)와 QZSS (quasi-zenith satellite system)의 궤도결정을 수행하고, IGS 정밀궤도력과 비교하여 항법시스템의 주요 성능지표인 URE (user range error)를 계산하였다. 항법위성에 탑재된 시계오차를 추정할 경우 radial 방향 궤도오차와 시계오차가 높은 역상관 관계를 가지는데 서로 상쇄되어 GPS와 QZSS의 궤도결정 URE 표준편차는 1.99 m, 3.47 m로 낮은 수준을 유지하였다. 항법위성 시계오차를 추정하는 대신 항법메시지의 시계오차를 모델링한 값으로 대체하여 궤도결정을 수행하였으며, URE와 지역적 상관관계 및 지상국 배치에 의한 영향을 분석하였다.

A Short-Term Prediction Method of the IGS RTS Clock Correction by using LSTM Network

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권4호
    • /
    • pp.209-214
    • /
    • 2019
  • Precise point positioning (PPP) requires precise orbit and clock products. International GNSS service (IGS) real-time service (RTS) data can be used in real-time for PPP, but it may not be possible to receive these corrections for a short time due to internet or hardware failure. In addition, the time required for IGS to combine RTS data from each analysis center results in a delay of about 30 seconds for the RTS data. Short-term orbit prediction can be possible because it includes the rate of correction, but the clock correction only provides bias. Thus, a short-term prediction model is needed to preidict RTS clock corrections. In this paper, we used a long short-term memory (LSTM) network to predict RTS clock correction for three minutes. The prediction accuracy of the LSTM was compared with that of the polynomial model. After applying the predicted clock corrections to the broadcast ephemeris, we performed PPP and analyzed the positioning accuracy. The LSTM network predicted the clock correction within 2 cm error, and the PPP accuracy is almost the same as received RTS data.

Spatial Decorrelation of SBAS Satellite Error Corrections in the Korean Peninsular

  • Jang, Jaegyu;So, Hyoungmin;Lee, Kihoon;Park, Jun-Pyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.73-79
    • /
    • 2016
  • The characteristics of the SBAS satellite orbit and clock corrections are highly affected by the narrow network size in the Korean peninsula, which is expected to have an important role in the future dual frequency SBAS. The correlation between satellite corrections can be analyzed in terms of the spatial decorrelation effect which should be analyzed to keep the service area as wide as possible. In this paper, the characteristics of satellite error corrections for the potential Korean dual frequency SBAS were analyzed, and an optimal filter design approach is proposed to maximize the service area.

GPS 위성 시계 이상 검출을 위한 위성 시계 오차 추정 정확도 향상 (Improving Estimation Accuracy of Satellite Clock Error for GPS Satellite Clock Anomaly Detection)

  • 허윤정;조정호;허문범
    • 한국항공우주학회지
    • /
    • 제39권3호
    • /
    • pp.225-231
    • /
    • 2011
  • GPS 위성 이상 신호의 발생 요인 중 위성 시계의 이상 현상은 GPS 측정치에 매우 큰 영향을 미칠 수 있으나, 측정치에는 궤도 오차, 이온층 지연 오차, 대류층 지연 오차, 다중경로 오차, 수신기 시계 오차 등의 성분들이 포함되어 있어 위성 시계의 오차 범위가 다른 요소에 의한 오차보다 커지기 전에는 위성 시계의 이상 현상을 검출하기 어려운 문제가 있다. 위성 시계에 이상 현상이 발생하였을 때 이상 판별의 임계 범위를 최소화 하여 빠르고 정확하게 검출을 수행할 수 있도록, 본 논문에서는 이중 주파수 측정치로부터 반송파 스무딩 필터를 적용하고 수신기 시계 오차 및 다른 여러 가지 요인에 의한 오차를 보정한 후 정확한 위성 시계 오차를 추정하는 방법을 제시하였고 IGS 기관에서 제공하고 있는 위성 시계 정보와 비교를 통해 제시한 방법의 성능을 확인하였다.

Determination of Geostationary Orbits (GEO) Satellite Orbits Using Optical Wide-Field Patrol Network (OWL-Net) Data

  • Shin, Bumjoon;Lee, Eunji;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권3호
    • /
    • pp.169-180
    • /
    • 2019
  • In this study, a batch least square estimator that utilizes optical observation data is developed and utilized to determine geostationary orbits (GEO). Through numerical simulations, the effects of error sources, such as clock errors, measurement noise, and the a priori state error, are analyzed. The actual optical tracking data of a GEO satellite, the Communication, Ocean and Meteorological Satellite (COMS), provided by the optical wide-field patrol network (OWL-Net) is used with the developed batch filter for orbit determination. The accuracy of the determined orbit is evaluated by comparison with two-line elements (TLE) and confirmed as proper for the continuous monitoring of GEO objects. Also, the measurement residuals are converged to several arcseconds, corresponding to the OWL-Net performance. Based on these analyses, it is verified that the independent operation of electro-optic space surveillance systems is possible, and the ephemerides of space objects can be obtained.

Accuracy Assessment of IGSO and GEO of BDS and QZSS Broadcast Ephemeris using MGEX Products

  • Son, Eunseong;Choi, Heonho;Joo, Jungmin;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권4호
    • /
    • pp.347-356
    • /
    • 2020
  • In this study, Inclined Geosynchronous Orbit (IGSO) and Geostationary Orbit (GEO) of BeiDou System (BDS) and Quasi Zenith Satellite System (QZSS) satellites positions and clock errors calculated by broadcast ephemeris and compared with Multi-GNSS Experiment (MGEX) products provided by five Analysis Centers (ACs). Root Mean Square Errors (RMSE) calculated for satellite position error. The IGSO results showed that 1.82 m, 0.91 m, 1.28 m in BDS and 1.34 m 0.36 m 0.49 m in QZSS and the GEO results showed that 2.85 m, 6.34 m, 6.42 m in BDS and 0.47 m, 4.79 m, 5.82 m in QZSS in the direction of radial, along-track and cross-track respectively. RMS calculated for satellite clock error. The IGSO result showed that 2.08 ns and 1.24 ns and the GEO result showed that 1.28 ns and 1.12 ns in BDS and QZSS respectively.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms Based on GLONASS Code-Pseudorange Measurements

  • Kim, Mi-So;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제3권4호
    • /
    • pp.155-161
    • /
    • 2014
  • The purpose of this study is to develop precise point positioning (PPP) algorithms based on GLONASS code-pseudorange, verify their performance and present their utility. As the basic correction models of PPP, we applied Inter Frequency Bias (IFB), relativistic effect, satellite antenna phase center offset, and satellite orbit and satellite clock errors, ionospheric errors, and tropospheric errors that must be provided on a real-time basis. The satellite orbit and satellite clock errors provided by Information-Analytical Centre (IAC) are interpolated at each observation epoch by applying the Lagrange polynomial method and linear interpolation method. We applied Global Ionosphere Maps (GIM) provided by International GNSS Service (IGS) for ionospheric errors, and increased the positioning accuracy by applying the true value calculated with GIPSY for tropospheric errors. As a result of testing the developed GLONASS PPP algorithms for four days, the horizontal error was approximately 1.4 ~ 1.5 m and the vertical error was approximately 2.5 ~ 2.8 m, showing that the accuracy is similar to that of GPS PPP.