• Title/Summary/Keyword: Orange G

Search Result 249, Processing Time 0.028 seconds

Enhanced Production of Astaxanthin by Archaea Chaperonin in Escherichia coli (대장균에서 고세균 샤페론을 이용한 아스타잔틴 생산능 향상을 위한 연구)

  • Seo, Yong Bae;Lee, Jong Kyu;Jeong, Tae Hyug;Nam, Soo-Wan;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1339-1346
    • /
    • 2015
  • The aim of this study is to increase production of carotenoids in recombinant Escherichia coli by Archaea chaperonin. The carotenoids are a widely distributed class of structurally and functionally diverse yellow, orange, and red natural pigments. These pigments are synthesized in bacteria, algae, fungi, and plants, and have been widely used as a feed supplement from poultry rearing to aquaculture. Carotenoids also exhibit diverse biological properties, such as strong antioxidant and antitumor activities, and enhancement of immune responses. In the microbial world, carotenoids are present in both anoxygenic and oxygenic photosynthetic bacteria and algae and in many fungi. We have previously reported cloning and functional analysis of the carotenoid biosynthesis genes from Paracoccus haeundaensis. The carotenogenic gene cluster involved in astaxanthin production contained seven carotenogenic genes (crtE, crtB, crtI, crtY, crtZ, crtW and crtX genes) and recombinant Escherichia coli harboring seven carotenogenic genes from Paracoccus haeundaensis produced 400 μg/g dry cell weight (DCW) of astaxanthin. In order to increase production of astaxanthin, we have co-expressed chaperone genes (ApCpnA and ApCpnB) in recombinant Escherichia coli harboring the astaxanthin biosynthesis genes. This engineered Escherichia coli strain containing both chaperone gene and astaxanthin biosynthesis gene cluster produced 890 μg/g DCW of astaxanthin, resulting 2-fold increased production of astaxanthin.

Assessment of Volatile Organic Compounds in Blood and Urine among Residents around Camp Carroll (캠프 캐럴 인근 주민의 혈중 및 요중 휘발성 유기화합물 평가)

  • Lim, Hyun-Sul;Yang, Wonho;Kim, Geun-Bae;Cho, Young-Sung;Min, Young-Sun;Lee, Kwan;Lee, Duk Hee;Ju, Young-Su;Kim, Sunshin;Heo, Jung;Jung, Dayoung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Objectives: Exposure to volatile organic compounds such as trichloroethylene(TCE) and perchloroethylene(PCE), along with Agent Orange, that were issued around Camp Carroll US Army Base situated in Waegwan, Chilgok-gun, Gyeongsangbuk-do Province, Korea. The main objective of this study was to assess the exposure to TCE and PCE of residents of the area surrounding Camp Carroll. Methods: The TCE, PCE and trichloroethanol(TCEOH) concentrations in blood and trichlroroacetic acid(TCA) and TCEOH concentrations in urine were measured and analyzed in a total of 1,033 residents around Camp Carroll. TCA and TCEOH are metabolites of TCE and PCE, respectively. The information on demographic characteristics and exposure variables in relation to underground water were obtained through a questionnaire completed by the subjects. Results: TCE, PCE and TCEOH concentrations were not detected in blood. Detection rates of TCA and TECOH concentrations in urine were 98.5% and 36.6%, respectively. Creatinine-corrected average TCA and TCEOH concentrations were $12.23{\pm}23.81{\mu}g/g$ and $0.66{\pm}4.31{\mu}g/g$, respectively. A significant difference was not shown between the drinking group and no drinking group for underground water, which was assumed as a potential route of exposure to TCE and PCE through the consumption of ground water. However, females drinking ground water showed a significantly higher mean level of TCA in urine than did males. There was no significant difference according to drinking ground water as a potential source of exposure to TCE and PCE in residents around Camp Carroll. Conclusions: Considering the statistical analysis of factors affecting exposure to TCE and PCE in ground water along with previous reports, TCA in urine as exposure to TCE and PCE might not be appropriate because it is found in chlorinated drinking water. Therefore, TCA concentration in urine may be the result of drinking of chlorinated water.

Luminescence Properties of La2MoO6:RE3+ (RE = Eu, Sm) Phosphors Subjected to the Different Concentrations of Activator Ions (활성제 이온의 농도 변화에 따른 La2MoO6:RE3+ (RE = Eu, Sm) 형광체의 발광 특성)

  • Kim, Gayeon;Shin, Johngeon;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.282-288
    • /
    • 2017
  • $Eu^{3+}$- or $Sm^{3+}$-doped $La_2MoO_6$ phosphors were synthesized with different concentrations of activator ions via a solid-state reaction. The X-ray diffraction patterns exhibited that crystalline structures of all the phosphors were tetragonal systems with the dominant peak occurring at (103) plane, irrespective of the concentration and the type of activator ions. The crystallites showed the pebble-like crystalline shapes and the average crystallite size increased with a tendency to agglomerate as the concentration of $Eu^{3+}$ ions increased. The excitation spectra of $Eu^{3+}$-doped $La_2MoO_6$ phosphors contained an intense charge transfer band centered at 331 nm in the range of 250-370 nm and three weak peaks at 381, 394, and 415 nm, respectively, due to the $^7F_0{\rightarrow}^5L_7$, $^7F_0{\rightarrow}^5L_6$, and $^7F_0{\rightarrow}^5D_3$ transitions of $Eu^{3+}$ ions. The emission spectra under excitation at 331 nm exhibited a strong red band centered at 620 nm and two weak bands at 593 and 704 nm. As the concentration of $Eu^{3+}$ increased from 1 to 20 mol%, the intensities of all the emission bands gradually increased. For the $Sm^{3+}$-doped $La_2MoO_6$ phosphors, the emission spectra consisted of an intense emission band at 607 nm arising from the $^4G_{5/2}{\rightarrow}^6H_{7/2}$ transition and three relatively small bands at 565, 648, and 707 nm originating from the $^4G_{5/2}{\rightarrow}^6H_{5/2}$, $^4G_{5/2}{\rightarrow}^6H_{9/2}$, and $^4G_{5/2}{\rightarrow}^6H_{11/2}$ transitions of $Sm^{3+}$, respectively. The intensities of all the emission bands approached maxima when concentration of $Sm^{3+}$ ions was 5 mol%. These results indicate that the optimum concentrations for highly-luminescent red and orange emission are 20 mol% of $Eu^{3+}$ and 5 mol% of $Sm^{3+}$ ions, respectively.

Solubility, Antioxidative and Antimicrobial Activity of Chitosan-Ascorbate (키토산-아스코베이트의 용해성, 항산화성 및 항균성)

  • Lee, Seung-Bae;Lee, Ye-Kyung;Kim, Soon-Dong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.973-978
    • /
    • 2006
  • This study was conducted to investigate the solubility, antioxidative and antimicrobial activity of the freeze dried chitosan-ascorbate (CAs) and chitosan-acetate (CAc). In the results of solubility, CAs was soluble over 0.5% in distilled water, vinegar, green tea, soju (distilled liquor), beer and red wine, while it was not soluble in soy sauce, soy milk, milk, orange juice, coffee, sesame oil, soy milk and soybean oil. The solubility of CAc in the liquid foods was similar to those of CAs, but it was soluble less than 0.1% in beer, and formed curd in red wine. Electron donating activity, antioxidative activity and SOD activity of CAs were 48.2, 90.6 and 67.5%, respectively, while the activities of the CAc were 0, 40.0 and 10.0%, respectively. The minimal inhibitory concentrations of CAs and CAc were $200\;{\mu}g/disc$ against Bacillus circulans, Bacillus brevis, Bacillus licheniformis, Bacillus arabitane and Bacillus sterothermophillus, $400\;{\mu}g/disc$ against Escherichia coli O157, Listeria monocytogenous, Bacillus cereus and Bacillus subtilis. There was no significant difference in Hunter's L* value between CAs and CAc $(81.95{\sim}82.97)$, but Hunter's a* and b* values of the CAs was higher than those of CAc. While sour and bitter tastes of CAs were lower than those of CAc, there was no significant difference in astringent taste. From these results, it suggested that CAs has more extensive utility in liquid foods with antimicrobial and antioxidant activity as well as sensory quality compared to CAc.

Genetic Expression of Color Approved by Color Qualities of Munsell System on the Cocoon of Silkworm, Bombyx mori (누에 고치색 유전자 발현의 다양성 검정 및 색채과학적 해석)

  • Han, Myung-Sae;Park, Hyun-Ro;Han, Sang-Mi;Nam, Ki-Soo;Kwon, Soon-Ha;Lim, Jong-Sung;Nguyen, Mau Tuan
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.1
    • /
    • pp.20-28
    • /
    • 1999
  • Color qualities investigated on the basis of Munsell code and Korean standard color code for the cocoons from various strain of mulberry silkworm, Bombyx mori. 16 of different color qualities were identified from 21 of original silworm strains, and determinated international name with the revision of Korean color name for cocoon. The various cocoon color confirmed on the sphere from 567 to 593 nm wavelength, 78% of those located at the region about 580 nm (575~584) of sensitive "color difference limen". Y gene engaged broad ranges of wavelength (575~593 nm) in the color expression, by contrast with other genes of Pk (593 nm), F (584~593), Grc and relative G group (567~570 nm), on the transmission of carotenoid or flavonoid color substance. YC gene expression by original silk worm strain was also distinguished by those variation of specific yellow than other colors from Grc, GaGb, Gc, and YPkF. Appearance of chrome yellow cocoon was dominant than other yellow in the cross among vivid yellow group. F1 of pin${\times}$green produced the cocoon of yellow such as "additive mixture" as color light, however, most of the hybrid between yellow cocoon showed the color similar to "subtractive mixture" as a mixture of dyestuff. Hybrid cocoons among yellow or green colors were decreased their hue, value, and chroma, than those of parent. Diallel cross among the strain of various green cocoon suggest the existence of Grc, Ga, Gb, Gc genes. Cream colored cocoon of B. mandarina was differed from other yellow cocoon of Bobyx mori B. mori. Y$^A$ with Ymc showed the similar role of Y with C, therefore, segregated yellow cocoon from the B. mori${\times}$B. mandarina (+$^YC/Y^AYmc$). YC expression of $Y^AY$mc genes might be suppressed by deficiency of outer layer sericin on the middle division of silk giand in the B. mandarina.

  • PDF

Gemological and Minearlogical Properties of the Red Garnet Stones (적색 석류석 보석의 보석.광물학적 특징)

  • 김금조;김진섭;김원사;최진범
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.19-31
    • /
    • 2003
  • Chemical composition, crystal structure, refractive index, specific gravity, color, and luster were studied fur pyrope-almandine series garnets. The main coloring agents determining the reddish or brownish garnets were also investigated. It was also examined if there is any relationship between mineralogical properties with respect to the various chemical compositions in the solid solution, in the hope to figure out the existing classification values of R.I. and S.G. using gem- testing facilities to distinguish pyrope from almadine. It was found that 17 out of the 24 specimens belong to pyrope and the rest almandine. R.I. of pyrope goes up to 1.77 and that of almandine is higher than the value.5.5. of pyrope reaches to 3.88 and that of almandine is greater than the value of pyrope. X-ray diffraction data revealed that pyrope-almandine garnets are isometric with space group Ia3d, and also show that the variation of cell parameters are not significant enough to parallel with the chemical compositions of the series. R.I. and S.G. increase with FeO content. Fe and Mn are most responsible to the red-purple and orange coloration of the specimens, respectively. Both zircon and rutile crystals are most common inclusions in the reddish stones.

The Genotoxicity Study of Molinate, an Herbicide, in Bacterial Reversion, in vitro and in vivo Mammalian System

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.176-184
    • /
    • 2006
  • The controversy on genotoxicity of molinate, an herbicide, has been reported in bacterial system, and in vitro and in vivo mammalian systems. To clarify the genotoxicity of molinate, we performed bacterial gene mutation test, in vitro chromosome aberration and mouse lymphoma $tk^{+/-}$ gene assay, and in vivo micronucleus assay using bone marrow cells and peripheral reticulocytes of mice. In bacterial gene mutation assay, no mutagenicity of molinate ($12-185{\mu}g/plate$) was observed in Salmonella typhimurium TA 98, 100, 1535 and 1537 both in the absence and in the presence of S-9 metabolic activation system. The clastogenicity of molinate was observed in the presence ($102.1-408.2\;{\mu}g/mL$) of metabolic activation system in mammalian cell system using Chinese hamster lung fibroblast. However, no clastogenicity was observed in the absence ($13.6-54.3\;{\mu}g/mL$) of metabolic activation system. It is suggested that the genotoxicity of molinate was derived some metabolites by metabolic activation. Molinate was also subjected to mouse lymphoma L5178Y $tk^{+/-}$ cells using microtiter cloning technique. In the absence of S-9 mixture, mutation frequencies (MFs) were revealed $1.4-1.9{\times}10^{-4}$ with no statistical significance. However, MFs in the presence of metabolic activation system revealed $3.2-3.4{\times}10^{-4}$ with statistical significance (p<0.05). In vivo micronucleus (MN) assay using mouse bone marrow cells, molinate revealed genotoxic potential in the dose ranges of 100-398 mg/kg of molinate when administered orally. Molinate also subjected to acridine orange MN assay with mouse peripheral reticulocytes. The frequency of micronucleated reticulocytes (MNRETs) induced 48 hr after i.p. injection at a single dose of 91, 182 and 363 mg/kg of molinate was dose-dependently increased as $10.2{\pm}4.7,\;14.6{\pm}3.9\;and\;28.6{\pm}6.3\;(mean{\pm}SD\;of\;MNRETs/2,000\;reticulocytes)$ with statistical significance (p<0.05), respectively. Consequently, genotoxic potential of molinate was observed in in vitro mammalian mutagenicity systems only in the presence of metabolic activation system and in vivo MN assay using both bone marrow cells and peripheral reticulocytes in the dose ranges used in this experiment. These results suggest that metabolic activation plays a critical role to express the genotoxicity of molinate in in vitro and in vivo mammalian system.

Genotoxicity Study of Bojungchisup-tang, an Oriental Herbal Decoction-in Vitro Chromosome Aberration Assay in Chinese Hamster Lung Cells and In Vivo Supravital-Staining Micronucleus Assay with Mouse Peripheral Reticulocytes

  • Ryu, Jae-Chun;Kim, Kyung-Ran;Kim, Hyun-Joo;Youn, Ji-Youn;Myung, Seung-Woon;Kim, Gyu-Hyung;Lee, Myeong-Jong;Chang, Il-Moo
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.391-397
    • /
    • 1998
  • The toxicity evaluation of oriental herbal drugs is of great concern at present. Bojungchisup-tang (BCST, in Korean), a decocted medicine of oriental herbal mixture, is now well used in clinic at oriental hospitals for the treatment of edema of several diseases in practice. However, the toxicity of the oriental herbal decocted medicines such as genetic toxicity is not well defined until now. In this respect, to clarify the genetic toxicity of BCST, in vitro chromosome aberration assay with Chinese hamster lung (CHL) fibroblasts and in vivo supravital micronucleus assay with mouse peripheral reticulocytes were performed in this study. In the chromosome aberration assay, we used 5,000 $\mu\textrm{g}$/ml BCST as maximum concentration because no remarkable cytotoxicity in CHL cells was observed both in the presence and absence of S-9 metabolic activation system. No statistical significant differences of chromosome aberrations were observed in CHL cells treated with 5,000, 2,500 and 1,250 $\mu\textrm{g}$/ml BCST for 6 hour both in the presence and absence of S-9 metabolic activation. However, very weak positive result (6.5-8.0% aberration) of BCST was obtained in the absence of S-9 metabolic activation system at 5,000 $\mu\textrm{g}$/ml BCST when treated for 24 hour, i.e. 1.5 normal cell cycle time. And also, in vivo clastogenicity of BCST was studied by acridine orange-supravital staining micronucleus assay using mouse peripheral reticulocytes. We used 2,000 mg/kg as the highest oral dose in this micronucleus assay because no acute oral toxicity of BCST was observed in mice. The optimum induction time of micronucleated reticulocytes (MNRETS) was determined as 36 hours after oral administration of 2,000 mg/kg BCST. No significant differences of MNRETs between control and BCST treatment groups were observed in vivo micronucieus assay. From these results, BCST revealed very weak positive result in chromosome aberration assay in vitro with CHL cells and no clastogenicity in micronucieus assay in vivo.

  • PDF

Vitamin C Quantification of Korean Sweet Potatoes by Cultivar and Cooking Method (국내산 고구마의 품종 및 조리방법별 비타민 C 함량)

  • Hwang, In Guk;Byun, Jae Yoon;Kim, Kyung Mi;Chung, Mi Nam;Yoo, Seon Mi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.955-961
    • /
    • 2014
  • This study was carried out to investigate the amounts of vitamin C in 22 sweet potato cultivars cultivated in Korea as well as evaluate the effects of cooking methods on vitamin C contents. Methods for determining vitamin C was validated by determining linearity, specificity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy using HPLC. Results showed high linearity in the calibration curve with a coefficient of correlation ($R^2$) of 0.9999. The LOD and LOQ values for ascorbic acid (AA) were 0.03 and $0.10{\mu}g/mL$, respectively. The relative standard deviations (RSDs) for intra- and inter-day precision of AA were less than 5%. The recovery rates of AA and dehydroascorbic acid (DHA) were in the range from 98.21~98.64 and 98.28~100.68%, respectively. Depending on cultivar, contents of AA, DHA, and total ascorbic acid (TA) in sweet potatoes varied in the range from 37.76 (Sinyulmi)~89.25 (Juhwangmin), 23.37 (Sinjami)~63.94 (Sinyulmi), and 68.52 (Sinjami)~115.95 (Juhwangmin) mg/100 g, respectively, and their average levels were $56.98{\pm}12.53$, $36.46{\pm}9.03$, and $93.44{\pm}12.00mg/100g$, respectively. The average TA levels were also dependent on flesh color, whish was significantly higher in general sweet potato and orange sweet potato than in purple sweet potato. Steaming, baking, and frying processes significantly reduced AA (10.61~58.41%), DHA (2.57~52.81%), and TA (14.54~49.92%) contents in sweet potatoes. The highest reduction of AA, DHA, and TA contents was observed after baking, followed by steaming and frying. We expect that the basic information provided by this study will be useful to plant breeders and food scientists.

Yield of Tuber Roots and Functional Substances According to the Planting Interval and Cultivation Period in Sweetpotato (Ipomoea batatas L.) (재식간격 및 재배 기간에 따른 고구마 수량 및 유용성분 함량 평가)

  • Park, Won;Kim, Tae Hwa;Lee, Hyeong-Un;Lee, Im Been;Kim, Su Jung;Roh, Jae Hwan;Chung, Mi Nam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.383-391
    • /
    • 2021
  • To develop a cultivation method for the mass production of sweetpotato cultivars, 'Juhwangmi' (orange tuber) and 'Sinjami' (puple tuber), the yield of tuber roots and content of various functional substances were analyzed according to planting intervals and growing periods. For 'Juhwangmi, the total yield of tubers was increased by respectively 36% and 54% and the yield of tubers over 300 g was increased by respectively 170% and 221% in the 140-day and 160-day cultivation plots compared with that in the 120-day cultivation plot at the 70×20 cm planting interval. Similarly, the total content of beta-carotene in the tubers increased as the cultivation period was extended. In particular, beta-carotene content at the 70×20 cm planting interval was the highest. For 'Sinjami', at the same planting interval, the total yield of tubers and yield of tubers over 300 g significantly increased as the growing period was extended. Within the same cultivation period, the yield of tubers over 300 g and the total anthocyanin content of 'Sinjami' were higher at the 70×30 and 70×35 cm planting intervals than at the 70×20 and 70×25 cm planting intervals in the 140-day and 160-day cultivation plots. Moreover, the total polyphenol and flavonoid content was significantly higher in 'Sinjami' than in 'Juhwangmi', and the values were the highest in the 160-day cultivation plots. In particular, the content of these two functional substances in tubers over 300 g was the highest at the 70×30 and 70×35 cm planting intervals.