DOI QR코드

DOI QR Code

Yield of Tuber Roots and Functional Substances According to the Planting Interval and Cultivation Period in Sweetpotato (Ipomoea batatas L.)

재식간격 및 재배 기간에 따른 고구마 수량 및 유용성분 함량 평가

  • Park, Won (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Kim, Tae Hwa (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Lee, Hyeong-Un (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Lee, Im Been (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Kim, Su Jung (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Roh, Jae Hwan (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Chung, Mi Nam (Bioenergy Crop Research Institute, National Institute of Crop Science)
  • 박원 (국립식량과학원 바이오에너지작물연구소) ;
  • 김태화 (국립식량과학원 바이오에너지작물연구소) ;
  • 이형운 (국립식량과학원 바이오에너지작물연구소) ;
  • 이임빈 (국립식량과학원 바이오에너지작물연구소) ;
  • 김수정 (국립식량과학원 바이오에너지작물연구소) ;
  • 노재환 (국립식량과학원 바이오에너지작물연구소) ;
  • 정미남 (국립식량과학원 바이오에너지작물연구소)
  • Received : 2021.08.23
  • Accepted : 2021.10.25
  • Published : 2021.12.01

Abstract

To develop a cultivation method for the mass production of sweetpotato cultivars, 'Juhwangmi' (orange tuber) and 'Sinjami' (puple tuber), the yield of tuber roots and content of various functional substances were analyzed according to planting intervals and growing periods. For 'Juhwangmi, the total yield of tubers was increased by respectively 36% and 54% and the yield of tubers over 300 g was increased by respectively 170% and 221% in the 140-day and 160-day cultivation plots compared with that in the 120-day cultivation plot at the 70×20 cm planting interval. Similarly, the total content of beta-carotene in the tubers increased as the cultivation period was extended. In particular, beta-carotene content at the 70×20 cm planting interval was the highest. For 'Sinjami', at the same planting interval, the total yield of tubers and yield of tubers over 300 g significantly increased as the growing period was extended. Within the same cultivation period, the yield of tubers over 300 g and the total anthocyanin content of 'Sinjami' were higher at the 70×30 and 70×35 cm planting intervals than at the 70×20 and 70×25 cm planting intervals in the 140-day and 160-day cultivation plots. Moreover, the total polyphenol and flavonoid content was significantly higher in 'Sinjami' than in 'Juhwangmi', and the values were the highest in the 160-day cultivation plots. In particular, the content of these two functional substances in tubers over 300 g was the highest at the 70×30 and 70×35 cm planting intervals.

본 연구에서는 유용성분 함유 고구마 품종의 대량생산을 위한 재배법 개발을 위하여 재식간격 및 재배기간에 따른 괴근 수량 및 다양한 유용성분 함량 분석을 수행하였다. 이러한 결과는 고구마 수량 및 유용성분 대량생산을 위한 재배법 개선에 유용한 정보를 제공해줄 것으로 생각된다. 1. 두 품종 모두 재배기간이 길수록 총 괴근 수량과 300 g 이상 괴근 수량이 증가하는 경향을 나타내었다. 2. 주황미의 경우 재식간격별 수량 조사 결과, 70×20 cm 정식구에서 재배기간이 길어질수록 총 괴근 수량과 300 g이상 괴근 수량이 가장 높게 나타났으며, 신자미의 경우에는 재식간격에 따른 총 괴근 수량의 변화는 큰 차이가 없었으나 300 g이상 괴근 수량은 140일과 160일 재배구에서 70×30 cm와 70×35 cm 정식구의 수량이 70×20 cm과 70×25 cm 정식구에 비해 높게 나타났다 3. 주황미 괴근의 베타카로틴의 총 함량도 재배기간이 길수록 높은 수치를 나타냈으며 70×20 cm 재배 간격에서 베타카로틴의 함량이 다른 재배간격에서 베타카로틴의 함량에 비해 가장 높게 나타났다. 4. 신자미 괴근의 안토시아닌의 총 함량 역시 재배기간 120일 대비 140일과 160일에서 크게 증가하였다. 재식간격에 따른 총 안토시아닌 수량의 변화는 큰 차이가 없었으나 300 g이상 괴근 수량에 해당하는 안토시아닌 총 함량은 140일과 160일 재배구에서 70×30 cm와 70×35 cm 정식구의 수량이 70×20 cm과 70×25 cm 정식구에 비해 높게 나타났다. 5. 총 폴리페놀 및 플라보노이드 함량을 분석한 결과 두 함량 모두 주황미 보다 신자미가 현저히 높은 함량을 나타내었으며, 160일 재배구에서 가장 높게 나타났다. 특히 300 g이상 괴근의 두 유용성분의 함량은 70×30 cm 또는 70×35 cm에서 가장 높은 수치를 나타내었다. 6. 고구마 유용성분 대량 생산을 위한 재배방법으로 두 품종 모두 재배기간은 160일이 적합하였으나 재식밀도는 주황미의 경우 특히 70×20 cm 재배 간격에서 베타카로틴의 함량이 다른 재배간격에서 베타카로틴의 함량에 비해 가장 높게 나타났으며, 신자미의 경우는 70×30 cm 또는 70×35 cm에서 300 g이상 괴근의 유용성분 총 함량이 높은 경향을 나타내었다

Keywords

Acknowledgement

본 논문은 농촌진흥청(과제번호:PJ01423301) 과제 연구비 지원에 의해 수행된 결과이며 연구비지원에 감사드립니다.

References

  1. Bouwkamp, J. C. and L. E. Scott. 1980. Effect of plant density on yield and yield components of sweet potato. Ann. Trop. Res. 2 : 1-11.
  2. Food Standards Test Method Manual. 2002. Ministry of Food and Drug Safety.
  3. Guertala, E. A. and J. A. Kembleb. 1997. Nitrogen rate and within-row plant spacing effects on sweetpotato yield and grade. J. Plant Nutr. 20 : 355-360. https://doi.org/10.1080/01904169709365256
  4. Hahn, S. K. and Y. Hozyo. 1984. Sweetpotato. In the physiology of tropical field crops. eds. Goldworthy, PR and NM Fisher. wiley, New York. P.551-567.
  5. Huett, D. O. 1976. Evaluation of yield, variability and quality of sweetpotato cultivars in sub-tropical Australia. Expt. Agr. 12 : 9-16. https://doi.org/10.1017/S0014479700007006
  6. Jung, S. T., J. W. Rhim, and S. G. Kang. 1998. Quality properties and carotenoid pigments of yellow sweet potato puree. J. Korean Soc. Food Sci. Nutr. 27 : 596-602.
  7. Jeong D. W., Y. K. Park, S. S. Nam, and S. K. Han. 2015. Effect of hot-air drying temperature on antioxidative activity of sweetpotato leaves. Korean J Food Preserv. 22 : 708-713. https://doi.org/10.11002/KJFP.2015.22.5.708
  8. Kim, J. S. 1995. Preparation of sweet potato drinks and its quality characteristics. J. Korean Soc. Food Sci. Nutr. 24 : 943-947.
  9. Kim, S. J., J. W. Rhim, L. S. Lee, and J. S. Lee. 1996. Extraction and characteristics of purple sweet potato pigment. Korean journal of food science and technology. 28(2) : 345-351.
  10. Kim, H. S., Y. H. Moon, M. N. Chung, Y. S. Ahn, J. S. Lee, and J. K. Bang. 2006. Effect of planting date, plant spacing, and harvest time on the production of small-sized sweetpotato in the alpine zone of Korea. Korean crop sci. 51 : 193-19.
  11. Kim, H. W., J. B. Kim, S. M. Cho, M. N. Chung, Y. M. Lee , S. M. Chu,J. H., Che. S. N. Kim S. Y. Kim, Y. S. Cho, J. H. Kim, and H. J. Park, 2012. Anthocyanin changes in the Korean purplefleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem. 130 : 966-972. https://doi.org/10.1016/j.foodchem.2011.08.031
  12. Laurie, S. M., M. Faber, P. J. Van Jaarsveld, R. N. Laurie, C. P. Du Plooy, and P. C. Modisane, 2012. β-Carotene yield and productivity of orange-fleshed sweet potato (Ipomoea batatas L. Lam.) as influenced by irrigation and fertilizer application treatments. Scientia horticulturae, 142 : 180-184. https://doi.org/10.1016/j.scienta.2012.05.017
  13. Lee, L. S., J. W. Rhim, S. J. Kim, and B. C. Chung. 1996. Study on the stability of anthocyanin pigment extracted from purple sweet potato. Korean Journal of Food Science and Technology. 28(2) : 352-359.
  14. Lee, L. S., E. J. Chang, J. W. Rhim, B. S. Ko, and S. W. Park. 1997. Isolation and identification of anthocyanins from purple sweet potatoes. Preventive Nutrition and Food Science. 2(2) : 83-88.
  15. Lee, L. S., S. J. Kim, and J. W. Rhim. 2000. Analysis of anthocyanin pigments from purple-fleshed sweet potato (Jami). J. Korean Soc. Food Sci. Nutr. 29(4) : 555-560.
  16. Lee, J. W., H. H. Lee, J. W., Rhim, and J. S. Jo. 2000. Determination of the conditions for anthocyanin extraction from purple-fleshed sweet potato. J. Korean Soc. Food Sci. Nutr. 29(5) : 790-795.
  17. Lee J. M., R. W. Durst, R. E. Wrolstad, K. W. Barnes, T. Eisele, M. M. Giusti, J. Hache, H. Hofsommer, S. Koswig, D. A. Krueger, S. Kupina, S. K. Martin, B. K. Martinsen, T. C. Miller, F. Paquette, A. Ryabkova, G. Skrede, U. Trenn, and J. D. Wightman. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC international, 88(5) : 1269-1278. https://doi.org/10.1093/jaoac/88.5.1269
  18. Lee, J. S., Y. S. Ahn, M. N. Chung, H. S. Kim, K. H. Jeong, J. K. Bang, Y. S. Song, H. K. Shim, S. K. Han, and S. J. Suh. 2010. A new purple sweetpotato cultivar for table use 'Yeonjami'. Korean J. Breed Sci. 42 : 679-683.
  19. Lee, Y. M., J. H. Bae, J. B. Kim, S. Y. Kim, M. N. Chung, M. Y. Park, J. S, Ko, J. Song, and J. H. Kim. 2012. Changes of physiological activities in four sweet potato genotypes by cooking conditions. Korean J. Nutr. 45 : 12-19. https://doi.org/10.4163/kjn.2012.45.1.12
  20. Ming, S. U., J. Huang, X. Gan, R. Xu, and J. Ye. 2011. Effects of plant-row spacing on growth and yield characters of sweet potato. Acta Agriculturae Jiangxi. 2011-05 (Abstract).
  21. Mulkey, W. A. and W. B. McLemore. 1992. Effect of plant spacing on yield of selected sweet potato cultivars with various planting dates. HortScience 27(11) : 165 (Abstract).
  22. Nair, R. B., B. Vimala, G. G. Nayar., and G. Padmaga. 1986. A new high-carotene short-duration hybrid "H-80/168" in sweetpotato. J. Root Crops. 12 : 97-102.
  23. Nam, S. Y., S. K. Jong, C. W. Rho, and K. M. Kim. 1997. Effect of planting density on the growth and yield in early cultivation of sweet potato. RDA. J. Crop Sci. 39(1) : 61-67.
  24. Park, I. S., H. J. Lee, M. K. Lee, and I. S. Park. 2006. Characterization of mushroom tyrosinase inhibitor in sweet potato. J. Life Sci. 16 : 396-399. https://doi.org/10.5352/JLS.2006.16.3.396
  25. Park, J. S., K. J. Lee, E. B. Oh, H. Y. Kim, S. Y. Lee, and D. S. Choi. 2014. Chemical compositions and antioxidative activities of sweet potato foliages harvested by the cultivation period and tips location. The Korean Journal of Food And Nutrition 27(5) : 897-905. https://doi.org/10.9799/KSFAN.2014.27.5.897
  26. Ramon, A. Arancibia, C. D. Smith, D. R. LaBonte, J. L. Main, T. P. Smith, and A. Q. Villordon. 2014. Optimizing sweetpotato production for fresh and processing markets through plant spacing and planting-harvest time. Hort Technology 24 : 16-24.
  27. Rhim, J. W. and J. W. Lee. 2002. Photostability of anthocyanin extracted from purple-fleshed sweet potato. Korean Journal of Food Science and Technology, 34(2) : 346-349.
  28. Ruiz, M. E., D. Pezo, and L. Martinez. 1980. The use of sweet potato (Ipomoea batatas, (L.) Lam) in animal feeding: I agronomic aspects. Trop. Anim. Prod. 5 : 144-151.
  29. Shin, J. H. and H. Y. Lee. 2019. Usage and Efficacy of Anthocyanins. J. Biotechnol Bioind. 7 : 17-19. https://doi.org/10.37503/jbb.2019.7.17
  30. Steed, L. E. and V. D. Truong. 2008. Anthocyanin content, anthioxidant activity, and selected physical properties of flowable purplefleshed sweet potato purees. J. Food Sci. 73 : 215-221.
  31. Suda, Y., J. Nakabayashi, I. Matsuo, and S. Aizawa. 1999. Functional equivalency between Otx2 and Otx1 in development of the rostral head. Development 126 : 743-757. https://doi.org/10.1242/dev.126.4.743
  32. Schultheis, J. R., S. A. Walters, and D. E. Adams. 1999. In-row plant spacing and date of harvest of 'Beauregard' sweetpotato affect yield and return on investment. HortScience 34 : 1229-1233. https://doi.org/10.21273/HORTSCI.34.7.1229
  33. Sulaiman, H. and O. Sasaki. 2001. Influence of planting density on the root growth and yield of sweet potato : Ipomoea batatas Lam. Mem. Fac. Agr. Kagoshima Univ. 37 : 11-19
  34. van Jaarsveld, P.J., M. Faber, S. A. Tanumihardjo, P. Nestel, C. J. Lombard, and A. J. S. Benade. 2005. β-Carotene-rich orange-fleshed sweet potato improves the vitamin A status of primary school children assessed with the modified-relative-doseresponse test. Am. J. Clin. Nutr. 81 : 1080-1087. https://doi.org/10.1093/ajcn/81.5.1080
  35. Yoshimoto, M. 2001. New trends of processing and use of sweet potato in Japan. Farming Jpn. 35 : 22-28.