• 제목/요약/키워드: Oral dosage form

검색결과 39건 처리시간 0.022초

의원의 건강보험청구자료를 이용한 고형경구제 분할 처방 분석 (Analysis of Prescriptions for Oral Solid Dosage Forms Split at Primary Health Care Using National Health Insurance Database)

  • 박세정;이숙향;이의경
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권2호
    • /
    • pp.119-126
    • /
    • 2007
  • Tablet splitting is used in pharmacy practice to adjust the dose to be administered. However, it also causes several problems such as undesirable effect for sustained release or enteric-coated dosage form, inaccuracy of dose, and pharmacist's safety by splitting hazardous drugs. This study investigated the current status of oral dosage form splitting for patients older than 19 years by analyzing Korea National Health Insurance Claims Database. Out of oral solid drugs prescribed (N=1,486,584) 9.8% of them included tablets (or capsules) split. There were some splitting cases even in sustained release (4.9%), enteric-coated forms (1.3%) and hazardous drugs (2.7%) that were selected by NIOSH (The National Institute for Occupational Safety and Health). The most frequently split drugs were antihistamines, neuropsychotics and steroids. In case of digoxin and warfarin, unit doses in a domestic market were not diverse compared to foreign markets. Guidelines for splitting oral solid dosage forms, approval of diverse doses and conducting dose-response studies for the commonly splitting ingredients on Korean people are needed for the saff and effective use of oral solid drugs.

Development of Self-microemulsifying Drug Delivery System for Enhancing the Bioavailability of Atorvastatin

  • Jin, Shun-Ji;Cho, Won-Kyung;Park, Hee-Jun;Cha, Kwang-Ho;Park, Jun-Sung;Koo, Ja-Seong;Wang, Hun-Sik;Kim, Jeong-Soo;Kim, Min-Soo;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권2호
    • /
    • pp.103-109
    • /
    • 2011
  • The objective of the study was to prepare self-microeulsifying drug delivery system (SMEDDS) incorporating atorvastatin calcium and evaluate its properties and oral bioavailability. Solubility of atorvastatin in various vehicles was determined. Pseudo-ternary phase diagrams were constructed to identify the good self-emulsification region. The droplet size distributions of the resultant emulsions were determined by dynamic light scattering measurement. The mean droplet size of chosen formulation (20% ethyl oleate, 40% tween-80, 40% Carbitol$^{(R)}$) was $23.4{\pm}1.3$ nm. The SMEDDS incorporating atorvastatin calcium appeared to be associated with better performance in dissolution and pharmacokinetic studies, compared with raw atorvastatin calcium. In dissolution test, the release percentage of atorvastatin from SMEDDS mixture could rapidly reach more than 95% within 3 min. Oral $AUC_{0{\rightarrow}8hr}$ values in SD rats was $1994{\pm}335\;ng{\cdot}hr/mL$, which significantly increased (P<0.05) compared with raw atorvastatin calcium. The SMEDDS formulation was relatively stable when stored at $4^{\circ}C$ during 3 months. Our studies illustrated the potential use of SMEDDS for the delivery of hydrophobic compounds, such as atorvastatin, by the oral route.

연질캡슐 피막물질로서 식물성 성분 원료와 젤라틴에 대한 품질특성 비교 (Comparative Characterization Study on Quality Attributes of Vegetable and Gelatin as Capsule Shell of Soft Capsule)

  • 김동욱;원권연
    • 약학회지
    • /
    • 제59권2호
    • /
    • pp.70-76
    • /
    • 2015
  • A Softgel is an oral dosage form for medicine similar to capsules and softgel dosage form offers several advantages over other oral dosage forms, such as delivering a liquid matrix designed to solubilize and improve the oral bioavailability of a poorly soluble compound as a unit dose solid dosage form, delivering low and ultra-low doses of a compound. This study aimed to qualify a proprietary vegetable soft capsule which contains modified starch and carrageenan as capsule shell components compare to the conventional gelatin softgel. Four kinds of samples were prepared with vegetable and gelatin capsule shell, respectively. Morphology of capsule shell, mechanical strength of capsule, and hygroscopic properties were studied for comparing the quality attributes of softgel. Short-term stability against heat and moisture was also investigated in this study. Vegetable capsule shell showed better mechanical strength, physical stability and disintegration time for temperature and humidity than those of conventional gelatin capsule shell with four different filling materials used frequently as soft capsule form. Conclusively, this vegetable capsule shell polymer system can replace easily gelatin-shell systems and additionally allows encapsulation of lipid fills at high temperatures that are semisolid or solid-like at room temperature.

흰쥐에 경구 투여시 히드록시프로필-베타-시클로덱스트린과 니트렌디핀 고체분산에 의한 생체이용률 증가 (Enhancement of Nitrendipine Bioavailability in Rats by its Solid Dispersion with $Hydroxypropyl-{\beta}-Cyclodextrin$ after Oral Administration)

  • 용철순
    • Journal of Pharmaceutical Investigation
    • /
    • 제27권4호
    • /
    • pp.295-301
    • /
    • 1997
  • Nitrendipine, a slightly soluble calcium channel blocking agent forms a solid dispersion system with $hydroxypropyl-{\beta}-cyclodextrin$, which exhibits better dissolution characteristics than the uncomplexed drug. The dissolution rate of nitrendipine was markedly increased in solid dispersion system in pharmacopeial disintegration media at pH 1.2 and pH 6.8. Four different dosage forms of nitrendipine were administered to rats: (a) nitrendipine in the solution of PEG 400; (b) nitrendipine solid dispersion system with $hydroxypropyl-{\beta}-cyclodextrin$ in a molar ratio of 1:2 by solvent evaporation method and administered in capsule form; (c) physical mixture of nitrendipine with $hydroxypropyl-{\beta}-cyclodextrin$ in a molar ratio of 1:2 and administered in capsule form; (d) nitrendipine alone administered in capsule form. Relative bioavailability after the oral administration of various dosage forms to rats with a dose of 10 mg/kg equivalent to nitrendipine was compared with that of nitrendipine in the solution of PEG 400. The AUC of solid dispersion was significantly bigger than that of nitrendipine powder. $T_{max}$ of solid dispersion was significantly shorter and $C_{max}$ was higher than that of nitrendipine powder. These results indicate that the bioavailability of nitrendipine could be improved markedly by inclusion complexation. An interesting correlation also appears to exist between the in vitro dissolution data and the area under the plasma concentration-time curves.

  • PDF

오메프라졸-에칠렌디아민 복합체를 이용한 제제설계 (Formulation of Omeprazole Preparations using Omeprazole-Ethylendiamine Complex)

  • 오세종;박성배;박선희;황성주;이계주
    • Journal of Pharmaceutical Investigation
    • /
    • 제25권1호
    • /
    • pp.19-29
    • /
    • 1995
  • The study was carried out to develop useful formulation for omeprazole(OMP) through OMP-ethylendiamine complex(OMPED), and the pharmaceutical properties of formula were tested to find out the difference in vivo behaviors of formulations between the free and complexed OMP. Oral and suppository dosage forms were also formulated and the dissolution profiles and pharmacokinetic parameters were measured to observe the difference in bioavailability between the free and complex form, and the correlation between dissolution rate and bioavailability was evaluated. The results are summarized as follows; In the case of formulation for oral administration, the release of OMP from enteric OMPED pellets was found satisfactory to the requirement standard and no decomposition of OMP in the pellets was found in acidic solution. Therefore the enteric OMPED pellets are anticipated to be a stable formulation. The release of OMP from OMPED tablet with chitosan as excipient and coated with cellulose acetate phthalate was found to be significantly retarded. The results of bioavailability test for OMP and OMPED tablets with lactose-excipient showed that the AUC value of OMP tablet was $116.89\;{\mu}g\;{\cdot}\;min/ml$, that of OMPED tablet was $161.10\;{\mu}g\;{\cdot}\;min/ml$, respectively. The reason why was thought that OMP decomposes more readily in body than OMPED, and the AUC of the tablet with chitosan-excipient and coated with cellulose acetate phthalate was most enhanced. In the case of bioavailability for suppositories with OMP, $OMP-{\beta}\;-cyclodextrin$ complex and OMPED, the AUC of OMPED suppository was most increased. From the above results, it is thought that the more stable and bioavailable oral or rectal dosage forms could be developed by using the OMPED as a potential OMP complex.

  • PDF

오메프라졸의 제제화 및 평가 (Stability and Dissolution Enhancement of Omeprazole by Pharmacentical Formulation)

  • 지웅길;이계원;전운종
    • Journal of Pharmaceutical Investigation
    • /
    • 제22권4호
    • /
    • pp.281-287
    • /
    • 1992
  • Omeprazole (OMZ) is very unstable in acidic solution, which selectively inhibit the release of the gastric juice in the gastric mucosa, In order to stabilize (OMZ) in oral solid dosage form, the enteric-coated microcapsules and compression-coated OMZ tablets containing lysine or arginine as stabilizer were prepared and their dissolution and stability test were performed. The haif life of OMZ microcapsules containing arginine was 194 days at $30^{\circ}C$ and OMZ was completely released in 60 min. The half-lives of enteric coated and non-coated compression-coated OMZ tablets with lysine were 292 and 95 days at $30^{\circ}C$, respectively. The half-lives of enteric coated and non-coated compression-coated tablets with arginine were 1752 and 293 days at $30^{\circ}C$, respectively, and OMZ were released completely in 20 min in the 2nd fluid of K.P.VI. Consequently, the enteric-coated compression-coated OMZ tablets with arginine as stabilizer provided a good formulation for oral solid dosage form.

  • PDF

Controlled Release and Stabilization of Cefaclor from Alginate-based Matrices for Oral Delivery Design

  • Bak, So-Im;Lee, Jue-Yeon;Song, Hye-Won;Hwang, Jeong-Hyo;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권4호
    • /
    • pp.327-330
    • /
    • 2002
  • Alginate based polymeric matrices were designed for controlled release and stabilization of cefaclor in gastrointestinal fluid. Cefaclor is known to be acid stable and subjected to be degraded at neutral and alkaline pHs. In order to achieve an effective release profile of cefaclor in gastrointestinal tract, a particular strategy in dosage form design should be required from the view point of maintaining its activity. The amphiphilic nature of cefaclor allowed its controlled release using ionic polymers based on ionic interaction between the drug and polymers. The thrust of this study was to develop a technique that delivers cefaclor keeping effective release rate in the intestinal tract. Considering the fast degradation of cefaclor in the intestinal fluid, the matrices were designed to release surplus amount of cefaclor. The alginate based matrices demonstrated increase in release rate in the simulated intestinal fluid, which was favorable to compensate the degraded portion of cefaclor. In addition, stabilization of cefaclor in the intestinal fluid was obtained by employing citric acid that provides an local acidic environment. The matrices might be valuably used for the development of an oral cefaclor dosage form.

Enhanced Bioavailability by Transdermal Administration of Pranoprofen Gels Containing Octanoic Acid to Rats

  • Choi, Jun-Shik;Shin, Sang-Chul
    • Biomolecules & Therapeutics
    • /
    • 제16권3호
    • /
    • pp.210-214
    • /
    • 2008
  • The pharmacokinetic parameters and bioavailability of pranoprofen from the gel were measured to determine the enhancing effect of octanoic acid on the transdermal absorption of pranoprofen in rats. 8 mg/kg of pranoprofen was administered from gel with octanoic acid (the enhancer group) or that without octanoic acid (the control group) via the transdermal route, and the results were compared with those obtained from the intravenously (0.5 mg/kg, IV group) or orally administered group (4 mg/kg, oral group). The AUC of the control, the enhancer, the IV, and the oral groups were $20.2{\pm}5.1$, $50.7{\pm}12.7$, $19.9{\pm}2.5$, and $70.5{\pm}17.6\;ug/ml{\cdot}h$ respectively. The average $C_{max}$ of the control and the enhancer group were $0.93{\pm}0.23$ and $2.82{\pm}0.71\;ug/ml$, respectively, and the mean $T_{max}$ of the control and the enhancer group was 7.00 h. The relative bioavailability of the transdermally administered pranoprofen gel containing octanoic acid was approximately 2.50 times higher than the control group, showing a relatively constant, sustained blood concentration with minimal fluctuation. This suggests that it might be feasible to develop a pranoprofen gel preparation containing an enhancer for the transdermal administration, which is more convenient dosage form than the oral dosage forms.

Treatment of pigs with enrofloxacin via different oral dosage forms - environmental contaminations and resistance development of Escherichia coli

  • Janssen, Paula;Barton, Gesine;Kietzmann, Manfred;Meissner, Jessica
    • Journal of Veterinary Science
    • /
    • 제23권2호
    • /
    • pp.23.1-23.15
    • /
    • 2022
  • Background: Antibacterial agents play important roles in the treatment of bacterial infections. However, the development of antimicrobial resistance (AMR) and carry-over of substances into the environment are several problems arising during oral treatment of bacterial infections. We assessed AMR development in commensal Escherichia coli (E. coli) in enrofloxacin treated and untreated animals. In addition, we examined fluoroquinolone in the plasma and urine of treated and untreated animals, and in sedimentation dust and aerosol. Methods: In each trial, six pigs were treated with enrofloxacin via powder, granulate or pellet forms in two time periods (days 1-5 and 22-26). Four pigs served as untreated controls. The minimum inhibitory concentration (MIC) was determined to evaluate AMR development. Analysis of enro- and ciprofloxacin was performed with high performance liquid chromatography. Results: Non-wildtype E. coli (MIC > 0.125 ㎍/mL) was detected in the pellet treated group after the first treatment period, whereas in the other groups, non-wildtype isolates were found after the second treatment period. E. coli with MIC > 4 ㎍/mL was found in only the pellet trial. Untreated animals showed similar susceptibility shifts several days later. Bioavailability differed among the treatment forms (granulate > pellet > powder). Enro- and ciprofloxacin were detected in aerosols and sedimentation dust (granulate, powder > pellet). Conclusions: This study indicates that the kind of the oral dosage form of antibiotics affects environmental contamination and AMR development in commensal E. coli in treated and untreated pigs.

Protein Drug Oral Delivery: The Recent Progress

  • Lee, Hye-J.
    • Archives of Pharmacal Research
    • /
    • 제25권5호
    • /
    • pp.572-584
    • /
    • 2002
  • Rapid development in molecular biology and recent advancement in recombinant technology increase identification and commercialization of potential protein drugs. Traditional forms of administrations for the peptide and protein drugs often rely on their parenteral injection, since the bioavailability of these therapeutic agents is poor when administered nonparenterally. Tremendous efforts by numerous investigators in the world have been put to improve protein formulations and as a result, a few successful formulations have been developed including sustained-release human growth hormone. For a promising protein delivery technology, efficacy and safety are the first requirement to meet. However, these systems still require periodic injection and increase the incidence of patient compliance. The development of an oral dosage form that improves the absorption of peptide and especially protein drugs is the most desirable formulation but one of the greatest challenges in the pharmaceutical field. The major barriers to developing oral formulations for peptides and proteins are metabolic enzymes and impermeable mucosal tissues in the intestine. Furthermore, chemical and conformational instability of protein drugs is not a small issue in protein pharmaceuticals. Conventional pharmaceutical approaches to address these barriers, which have been successful with traditional organic drug molecules, have not been effective for peptide and protein formulations. It is likely that effective oral formulations for peptides and proteins will remain highly compound specific. A number of innovative oral drug delivery approaches have been recently developed, including the drug entrapment within small vesicles or their passage through the intestinal paracellular pathway. This review provides a summary of the novel approaches currently in progress in the protein oral delivery followed by factors affecting protein oral absorption.