DOI QR코드

DOI QR Code

Enhanced Bioavailability by Transdermal Administration of Pranoprofen Gels Containing Octanoic Acid to Rats

  • Published : 2008.09.30

Abstract

The pharmacokinetic parameters and bioavailability of pranoprofen from the gel were measured to determine the enhancing effect of octanoic acid on the transdermal absorption of pranoprofen in rats. 8 mg/kg of pranoprofen was administered from gel with octanoic acid (the enhancer group) or that without octanoic acid (the control group) via the transdermal route, and the results were compared with those obtained from the intravenously (0.5 mg/kg, IV group) or orally administered group (4 mg/kg, oral group). The AUC of the control, the enhancer, the IV, and the oral groups were $20.2{\pm}5.1$, $50.7{\pm}12.7$, $19.9{\pm}2.5$, and $70.5{\pm}17.6\;ug/ml{\cdot}h$ respectively. The average $C_{max}$ of the control and the enhancer group were $0.93{\pm}0.23$ and $2.82{\pm}0.71\;ug/ml$, respectively, and the mean $T_{max}$ of the control and the enhancer group was 7.00 h. The relative bioavailability of the transdermally administered pranoprofen gel containing octanoic acid was approximately 2.50 times higher than the control group, showing a relatively constant, sustained blood concentration with minimal fluctuation. This suggests that it might be feasible to develop a pranoprofen gel preparation containing an enhancer for the transdermal administration, which is more convenient dosage form than the oral dosage forms.

Keywords

References

  1. Fang, J.Y., Lin, H.H., Chen, H.I. and Tsai, Y.H. (1998). Development and evaluation on transdermal delivery of enoxacin via chemical enhancers and physical iontophoresis. J. Cont. Rel. 54, 293-304 https://doi.org/10.1016/S0168-3659(98)00010-8
  2. Fuccela, L. M., Goldaniga, G. C., Moro, E., Tamassia, V. Tosolini, G. P. and Valzelli, G. (1973). Fate of analgesic and antiinflammatory drug K4277 after oral administration to man. Dur. J. Clin. Pharmacol. 6, 256-260 https://doi.org/10.1007/BF00644742
  3. Hadgraft, J., Hadgraft, J. W. and Sarkany, I. (197)3. The effects of thermodynamic activity on percutaneous absorption. J. Pharm. Pharmacol., 25, 122-123
  4. Huang, Y. B., Wu, P. C., Ko, H. M. and Tsai, Y. H. (1995). Cardamon oil as a skin permeation enhancer for indomethacin, piroxicam and diclofenac. Int. J. Pharm. 126, 111-117 https://doi.org/10.1016/0378-5173(95)04104-4
  5. Kato, Y., Arima, N. and Nishimine, H. (1976). Studies on antiinflammatory agents . Absorption, excretion, distribution and metabolism of 2-(5h-[1] benzopyrano [2, 3-b] pyridin-7-yl) propionic acid (Y-8004) in rats and mice. Yakugaku Zasshi 96, 819-826 https://doi.org/10.1248/yakushi1947.96.7_819
  6. Luders, R. C., Maggio-Cavaliere, M. B., Egger, H., Chemiken, H. T. L., Gum, D. B. and Resnick, O. (1977). Disposition of pranoprofen, a new anti-inflammatory drug. Clin. Pharmacol. Ther. 21, 721-730 https://doi.org/10.1002/cpt1977216721
  7. Mizobuchi, T., Oji, Y. and Rokusa, K. (1986). Sheet type buccal adhesive tapes for sustained drug delivery in oral cavity, Jpn. Kokai Tokko Koho, 87, 178513-178518
  8. Monti, D., Chetoni, P., Burgalassi, S., Najarro, M., Saettone, M.F. and Boldrini, E. (2002). Effect of different terpene-containing essential oils on permeation of estradiol through hairless mouse skin. Int. J. Pharm. 237, 209-214 https://doi.org/10.1016/S0378-5173(02)00032-7
  9. Nakayama, A., Oda, M., Miyazaki, S. and Takeda, M. (1994). Oral mucosal adhesive tablets of indomethacin using chitosan and sodium alginate, Yakuzaigaku 54, 185-189
  10. Nomura, T., Imai, T. and Otagiri, M. (1993). Stereoselective disposition of pranoprofen, a nonsteroidal anti-inflammatory drug in rabbits. Biol. Pharm. Bull. 6, 298-303
  11. Park, Y. H., Chung, B. H., Cha, B. J. Kwon, J.W. and Yang, J. I. (1990). Preparation and evaluation of sustained release oral adhesive type acyclovir tablets, Yakhak Hoeji 34, 155-160
  12. Sagara K, Yamada I, Matsuura Y, Kawata M. and Shibata M. (1996). Gastrointestinal physiology-regulated dogs for bioavailability evaluation of an oral controlled-release dosage form composed of pulsatile release granules. Biol. Pharm. Bull. 19, 1184-1188 https://doi.org/10.1248/bpb.19.1184
  13. Saito, S., Sadamoto, K., Ishikawa, Y., Machida, Y. and Nagai, T. (1990). Preparation and evaluation of oral mucosal adhesive film, Yakuzaigaku 50, 347-352
  14. Shin, S. C., Cho, C. W. and Oh, I. J. (2000). Enhanced efficacy by percutaneous absorption of piroxicam from the poloxamer gel in rats. Int. J. Pharm. 193, 213-218 https://doi.org/10.1016/S0378-5173(99)00339-7
  15. Shin, S. C. and Kim, J, Y. (2000). Enhanced permeation of triamcinolone acetonide through the buccal mucosa. Eur. J. Pharm. Biopharm. 50, 217-220 https://doi.org/10.1016/S0939-6411(00)00101-6
  16. Shin S. C. Shin, E. Y. and Cho, C. W. (2000). Enhancing effects of fatty acids on piroxicam permeation through rat skins, Drug Dev. Ind. Pharm., 26, 563-566 https://doi.org/10.1081/DDC-100101269
  17. Shin, S. C. Cho, C. W. and Oh, I. J. (2001). Effects of non-ionic surfactants as permeation enhancers towards piroxicam from the poloxamer gel through rat skins. Int. J. Pharm. 222, 199-203 https://doi.org/10.1016/S0378-5173(01)00699-8
  18. Shin, S. C. and Cho, C. W. (2006). Enhanced transdermal delivery of pranoprofen from the bioadhesive gels, Arch. Pharm. Res. 29, 928-933 https://doi.org/10.1007/BF02973916
  19. Stott, P.W., Williams, A.C. and Barry, B.W. (2001). Mechanistic study into the enhanced transdermal permeation of a model $\beta$-blocker, propranolol, by fatty acids: a melting point depression effect. Int. J. Pharm. 219, 161-176 https://doi.org/10.1016/S0378-5173(01)00645-7
  20. Vavrova, K., Hrabalek, A., Doleal, P., Holas, T. and Zbytovska, J, (2003). L-Serine and glycine based ceramide analogues as transdermal permeation enhancers: polar head size and hydrogen bonding. Bioorg. & Medic. Chem. Letters. 13, 2351-2353 https://doi.org/10.1016/S0960-894X(03)00409-8
  21. Yamaoka, K., Tanigawara, Y., Nakagawa, and T., Uno, T. (1981). A pharmacokinetic analysis program (multi) for microcomputer. J. Pharmacobiodyn. 4, 879-885 https://doi.org/10.1248/bpb1978.4.879
  22. Yokomozo, Y., Sagitani, H. (1996). Effects of phospholipids on the percutaneous penetration of indomethacin through the dorsal skin of guinea pigs. J. Cont. Rel. 38, 267-274 https://doi.org/10.1016/0168-3659(95)00127-1
  23. Yoshio, I., Iwata, A., Isobe, M., Takamatsu, R., Higashi, M. (1990). The pharmacokinetics of pranoprofen in humans. Yakugaku Zasshi 110, 509-515 https://doi.org/10.1248/yakushi1947.110.7_509

Cited by

  1. Enhanced bioavailability and antihistamine effects by transdermal administration of loratadine gels containing an enhancer in rats 2010, https://doi.org/10.1002/ddr.20341
  2. Enhanced bioavailability and antihistamine effects of loratadine from the transdermal EVA matrix system in rats vol.20, pp.2, 2010, https://doi.org/10.1016/S1773-2247(10)50014-5
  3. One Pranoprofen drug-based metal coordination polymer: Synthesis, structure and properties vol.133, 2017, https://doi.org/10.1016/j.poly.2017.05.031
  4. Enhanced Local Anesthetic Efficacy of Bioadhesive Ropivacaine Gels vol.19, pp.3, 2011, https://doi.org/10.4062/biomolther.2011.19.3.357
  5. Skin-controlled release lipid nanosystems of pranoprofen for the treatment of local inflammation and pain vol.13, pp.19, 2018, https://doi.org/10.2217/nnm-2018-0195