• Title/Summary/Keyword: Oral delivery system

Search Result 142, Processing Time 0.023 seconds

The Effects of Creatine Oral Delivery on the Muscular Activity and Blood Lactate Density of Rowing Athletes (크레아틴 구강투여가 조정선수들의 근활성도와 혈중젖산농도에 미치는 영향)

  • Heo, Bo-Seob;Ji, Jim-Gu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.2
    • /
    • pp.537-545
    • /
    • 2015
  • The purpose of this study is to investigate how effects creatine dosage has on the improvement of rowing athletes' performance ability. Rowing athletes were administered with creatine, through which to examine the change of athletic performance ability, blood fatigue substances, and muscular activity. The subjects (participants) of this Study consisted of 12 male rowing athletes at P University, with at least 5 years of rowing experiences, which divided into two groups - creatine dosing group of 6 persons and control group of 6 persons - for random sampling measurement. Enzymatic-colorimetric method using lacrate oxidase and 4-aminoantipyrine was performed for blood lactate level analysis, and wireless EMG system (QEMG-4: Lxtha Korea) for muscular activity analysis, with 4 channels set for data analysis. As body parts to be measured, two muscular parts - latissimus dorsi and lumbar spinel - were chosen. Then, on the 5th day from the date of administering them with creatine (that is, 4 days after dosing them with creatine), rowing movement with the highest level of activity was calculated as peak value, which was measured twice. The test data used for this Study were SPSS/PC 18.0, pre-movement and post-movement two-way ANOVA for repeated measurement for comparative analysis of each muscle, with significant level at .05. As a result, the change of blood lactate level was significantly higher in creatine dosing group than in non-dosing group (p<.05). As for the change of muscular activity, both latissimus dorsi and lumbar spinel showed a significantly higher change of muscle in creatine dosing group than in non-dosing group (p<.05 and p<.05, respectively).

Recent Advancements of Treatment for Leptomeningeal Carcinomatosis

  • Gwak, Ho-Shin;Lee, Sang Hyun;Park, Weon Seo;Shin, Sang Hoon;Yoo, Heon;Lee, Seung Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Treatment of Leptomeningeal carcinomatosis (LMC) from solid cancers has not advanced noticeably since the introduction of intra-cerebrospinal fluid (CSF) chemotherapy in the 1970's. The marginal survival benefit and difficulty of intrathecal chemotherapy injection has hindered its wide spread use. Even after the introduction of intraventricular chemotherapy with Ommaya reservoir, frequent development of CSF flow disturbance, manifested as increased intracranial pressure (ICP), made injected drug to be distributed unevenly and thus, the therapy became ineffective. Systemic chemotherapy for LMC has been limited as effective CSF concentration can hardly be achieved except high dose methotrexate (MTX) intravenous administration. However, the introduction of small molecular weight target inhibitors for primary cancer treatment has changed the old concept of 'blood-brain barrier' as the ultimate barrier to systemically administered drugs. Conventional oral administration achieves an effective concentration at the nanomolar level. Furthermore, many studies report that a combined treatment of target inhibitor and intra-CSF chemotherapy significantly prolongs patient survival. Ventriculolumbar perfusion (VLP) chemotherapy has sought to increase drug delivery to the subarachnoid CSF space even in patients with disturbed CSF flow. Recently authors performed phase 1 and 2 clinical trial of VLP chemotherapy with MTX, and 3/4th of patients with increased ICP got controlled ICP and the survival was prolonged. Further trials are required with newly available drugs for CSF chemotherapy. Additionally, new LMC biologic/pharmacodynamic markers for early diagnosis and monitoring of the treatment response are to be identified with the help of advanced molecular biology techniques.

Formulation of Sustained Release Granule for Venlafaxine-HCl Using Water-Insoluble Polymer (수불용성 고분자를 이용한 염산벤라팍신의 서방형 과립 설계)

  • Park, Ji-Seon;Seo, Jin-A;Jeong, Sang-Young;Yuk, Soon-Hong;Shin, Byung-Cheol;Hwang, Sung-Joo;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.2
    • /
    • pp.101-106
    • /
    • 2007
  • Venlafaxine, 1-[2-(dimethylamino)-1-(4-methoxyphenyl)ethyl] cyclohexanol hydrochloride is a novel, nontricyclic antidepressant. venlafaxine is a unique antidepressant that differs structurally from other currently available. The aim ot the study was to formulate sustained-release venlafaxine granules and assess their formulation variables. It consists of two layers, venlafaxine drug layer and sustained release coating layer and manufactured by fluidized bed process. The sustained release of drug could be increased by double-control rising various components in venlafaxine drug layer and sustained-release layer. The drug-containing granules were coated with cellulose acetate, cetyl alcohol and Eudragit RS along with plastisizer such as dibuthyl sebacate as an nano-pore former The release oi venlafaxine depended on the type of Eudragit such as RS, and RL used in the formulation of controlled release layer. These results obtained clearly suggest that the sustained release oral delivery system for venlafaxine could be designed with satisfying drug release profile approved.

In Vitro Dissolution of Felodipine from Extended-Release Pellets (펠로디핀 방출연장형 펠렛의 용출 특성 평가)

  • Park, Jeong-Sook;Nam, Kyung-Wan;Shin, Kwang-Hyun;Park, Jong-Bum;Kim, Min-Soo;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.193-196
    • /
    • 2007
  • This study aimed to evaluate and develop $Eudragit^{(R)}$-coated pellets based on the dissolution using the paddle method. As coating materials, two types of $Eudragit^{(R)}$ were applied to obtain either sustained release form or fast released form. The dissolution test was carried out in phosphate buffer solution (pH 6.5) at $37^{\circ}C$, 100 rpm. In order to develop a sustained release preparation containing felodipine, a comparative dissolution study was done using commercial product as a control. The dissolution at 30 min of felodipine from $Eudragit^{(R)}$ RS or RL-coated pellets were 0.96% and 99.65, respectively. The weight ratio of $Eudragit^{(R)}$ RL pellets to RS pellets altered the dissolution rate, but did not optimize the dissolution rate. However, the sustained dissolution of felodipine from pellets was optimized by varying the coating ratios of $Eudragit^{(R)}$ RS. It is suggested that the coating ratio of pellets is the main factor which controls dissolution rate. Taken together, $Eudragit^{(R)}$ RS 30D-coated pellets showed the most comparable dissolution rate pattern to commercial product, $Splendil^{(R)}$. This sustained release pellets for oral delivery system of felodipine was simply manufactured, and drug release behavior was highly reproducible.

Pharmaceutical Formulation and Evaluation of Sustained - Release Hydrophilic Matrix Tablet of Cefatrizine Propyleneglycol Using Polyethylene Oxide (폴리에틸렌옥사이드를 이용한 세파트리진프로필렌글리콜 서방성매트릭스 정제의 제조 및 평가)

  • Lee, Eon-Hyoung;Park, Sun-Young;Jee, Ung-Kil;Kim, Dong-Chool
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.1
    • /
    • pp.37-41
    • /
    • 2001
  • Various characteristics of polyethylene oxide (PEO) are useful for drug delivery systems. In this study, PEO was used as a sustained release matrix system containing cefatrizine propyleneglycol (Cefa-PG) which is a new semi-synthetic broad-spectrum and orally active cephalosporin. Five kinds of sustained release matrix tablets were formulated with various content of PEO and other ingredients. And three types of matrix tablets were formulated of which compositions were the same but the hardness was different. It was found that PEO content influenced drug release rate. Increasing PEO content, the drug release rate from matrix tablets was decreased. In addition, Avicel, one of the ingredients of matrix components, changed the drug release from the sustained release PEO matrix tablets. With increasing Avicel content, the rate of drug release was increased. For the effect of hardness of matrix tablets, the rate of drug release is decreased with increasing hardness. In comparison of bioavailability parameters after oral administration of Cefa-PG PEO matrix tablets and general Cefa-PG capsule in beagle dog, the sustained release PEO matrix tablets is more useful than a general dosage form. $AUC^{0-12}$ of the sustained release PEO matrix tablet and the general dosage form was 1.16 and 0.644 respectively.

  • PDF

Transdermal Permeation Behavior of 5-FU using Microneedle (마이크로니들을 이용한 5-FU의 경피투과 거동)

  • Kim, Myoung-Jin;Park, Jung-Soo;Kim, Yun-Tae;Lee, Jun-Hee;Ahn, Sik-Il;Park, Jong-Hak;Mo, Jong-Hyun;Lee, Tae-Wan;Lee, Han-Koo;Khang, Gil-Son;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • 5-Fluorouracil (5-FU) is an antimetabolic of the pyrimidine derivatives that is used in chemotherapy for the treatment of several types of cancer. 5-FU have poor oral absorption and short biological half-time and strong side effects. Microneedle introduced to find a solution of problems. Microneedle device with roll was manufactured for transdermal delivery of various drugs. 5-FU was mixed in non-ionic surfactant such as tween 20 and tween 80. Camscope was used to analysis the permeation magnitude of treated skin by microneedle and trypan blue staining. The 5-FU solution with surfactant measured by ZETA-potential analysis system for stability of solution. The skin permeation rate of 5-FU determined by HPLC. We confirmed that cross treated skin was dyed more deeply than parallel treated skin through trypan blue staining. The results indicate that skin permeation rate of 5-FU was increased with the treatment types and treatment times.

Effect of Additive of the Encapsulated Amounts and Solubility of Poorly Water-soluble Ibuprofen in Gelatin Microcapsules

  • Li, Dong Xun;Park, Jung-Gil;Han, Hong-Hee;Yang, Chan-Woo;Choi, Jun-Young;Oh, Dong-Hoon;Yong, Chul-Soon;Choi, Han-Gon
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.5
    • /
    • pp.269-273
    • /
    • 2007
  • Poorly water-soluble ibuprofen and ethanol can be encapsulated in gelatin microcapsule by spray drying technique. To select an optimal formula of ibuprofen-loaded gelatin microcapsule which increased the ethanol content and ibuprofen solubility with the decreased amount of gelatin in the microcapsules, in this study, the effect of gelatin, ibuprofen and sodium lauryl sulfate on the ibuprofen solubility and the amount of ethanol and ibuprofen encapsulated in the gelatin microcapsule were investigated. Ibuprofen solubility and the amount of ethanol encapsulated increased as gelatin and sodium lauryl sulfate increased, reached maximum at 4% and 0.6%, respectively and then followed a rapid decrease. Furthermore, the ibuprofen solubility and the encapsulated ibuprofen content increased as the amount of ibuprofen increased, reaching maximum at 0.5% and beyond that, there was no change in the solubility and ibuprofen content. However, the encapsulated ethanol content remained same irrespective of the amount of ibuprofen. On the basis of increased ibuprofen solubility, our results showed that the formula of ibuprofen-loaded gelatin microcapsule at the ratio of gelatin/ibuprofen/sodium lauryl sulfate/water/ethanol of 4/0.5/0.6/30/70 with ibuprofen solubility of about $290\;{\mu}g/mL$ and ethanol content of about $160\;{\mu}g/mg$ could be a potential oral delivery system for poorly water-soluble ibuprofen.

Effect of Ion-Pair on Jejunal and Nasal Absorption of Cefotaxime (세포탁심의 공장 및 비점막흡수에 미치는 이온쌍의 효과)

  • Park, Gee-Bae;Jeon, Seung;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.4
    • /
    • pp.353-363
    • /
    • 1995
  • The purpose of this study was to investigate the intestinal and nasal absorption enhancement of cefotaxime (CTX) by ion-pairing with counterions and to design an effective oral and intranasal drug delivery system for antibiotics. Counterions for absorption promotion were cationic surfactants [cetylpyridinium chloride (CP), cetrimide (CT) and benzalkonium chloride (BA)]. In the presence of counterions, the apparent partition coefficient of cefotaxime was increased depending on the molar concentration of the counterions. Anion interference was observed for ion-pairing of cefotaxime with counterions because of the counterbalance between an anion and counterions. The present study employed the in situ simultaneous nasal and intestinal perfusion technique in rats. The apparent permeabilities $(P_{app})$ of cefotaxime were $1.43{\pm}0.04{\times}10^{-5}\;cm/sec(mean{\pm}S.E)$ in the nasal cavity and 0 in the jejunum, respectively, which indicated that the intrinsic absorptivity of cefotaxime was greater in the nasal cavity than in the jejunum. When ionupairing formers were used, the decreasing order of apparent cefotaxime permeability $(P_{app},\;10^{-5}\;cm/sec)$, corrected for surface area of absorption, was as followings: $BA\;(7.50{\pm}0.36)\;>\;CT\;(4.92{\pm}0.24)\;>\;CP\;(3.01{\pm}0.17)$ in the jejunum and $BA\;(22.31{\pm}1.36)\;>\;CP\;(18.24{\pm}0.81)\;>\;CT \;(16.22{\pm}1.87)$ in the nasal cavity. The increase in permeability of cefotaxime was about 13-fold in the rat nasal cavity and was marked in the rat jejunum for ion-pairing with counterions as compared to those without ion-pairing. The damages of jejunal and nasal mucosal membrane by counterions were observed within approximately 2hrs after removal of ion-pair of cefotaxime with counterions from the nasal cavity and jejunum. These results suggest that CP can be used as an ion-pairing former in the jejunum and CP and CT can be used as ion-pairing formers in the nasal cavity for cefotaxime, as well as for poorly absorbed drugs with a negative charge due to ionization.

  • PDF

Absorption of Itraconazole from Rat Small Intestine (이트라코나졸의 랫트 소장으로부터의 흡수)

  • Kim, Young-Hwa;Lee, Yong-Suk;Park, Gee-Bae;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.4
    • /
    • pp.215-222
    • /
    • 1991
  • The absorption characteristics of itraconazole, which is an antifungal agent, from intestinal segments in the anesthetized rat i1l situ were investigated in order to design an effective oral drug delivery system. The pH-solubility profile of itraconazole, the rate and extent of absorption of itraconazole, the optimal absorption site(s) of itraconazole and the absorption enhancing effect of sodium cholate on itraconazole were examined in the present study. In situ single-pass perfusion method and recirculating perfusion technique using duodenum(D), jejunum(J) and ileum(I) were employed for the calculation of apparent permeability(Pe) and apparent first-order rate constant(Kobs). respectively. The results of this study were as follows; (1) Itraconazole showed appreciable aqueous solubility only at pH values of below 2.0. (2) pe(cm/sec) decreased in the following order: $D(10.24{\pm}1.78{\times}10^{-4})>J(8.86{\pm}0.79{\times}10^{-4})>I(3.78{\pm}0.13 X 10^{-4})$. (3) $Kobs(min^{-1})$ decreased in the following order: $J(17.12{\pm}3.19{\times}10^{-3})>D(13.37{\pm}0.6{\times}10^{-3})>I(11.05{\pm}0.91{\times}10^{-3})$. (4) The solubility of itraconazole markedly increased with the increase of the concentration of sodium cholate. (5) The addition of 10 mM sodium cholate significantly increased the apparent first-order rate constant of itraconazole in the ileum by a factor of 6.8.

  • PDF

Bioavailability of Microspheres Containing Felodipine (필로디핀이 함유된 미립구의 생체이용률)

  • 양재헌;나성범;김영일;김남순
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.440-447
    • /
    • 2000
  • Microspheres of felodipine, which is one of the calcium channel blocker using a mixture of Eudragi $t^{R}$ RL, L, E, and cellulose on the base of Eudragi $t^{R}$ RS were investigated. Cremopho $r^{R}$ was added to each preparation of polymers in order to increase the release of felodipine from microspheres. Felodipine-loaded microspheres were prepared by a solvent evaporation method, which is based on dispersion of methylene chloride containing felodipine and polymers in 0.5 w/v % polyvinyl alcohol solution. The average diameter based on the size distribution of the felodipine-loaded microspheres was observed to be ca. 40-55 ${\mu}{\textrm}{m}$. A good and smooth surface were showed in all types of the microspheres. The amount of felodipine loaded was over 90 w/w % in all types of microspheres. The dissolution profiles of felodipine from microspheres were similar with each type of polymer, and about a 60 w/w % of the total amount of felodipine loaded to microsphere was released within 7 hours. Dissolution rate of felodipine from the microsphere was increased by addition of Cremophor. After oral administration of the felodipine-loaded microspheres in PVA solution and felodipine alone in PEG solution to rats, respectively, the pharmacokinetic study revealed that the Tmax values of the microspheres were observed in the range of 0.67~l.0 hr while that of the felodipine solution was obtained 0.33 hr. In addition, the AUC of the microspheres at 0 to 7 hr was remarkably increased in comparison to that of felodipine solution. These results revealed that the microspheres based on Eudragit RS could be a good candidate for the controlled release drug delivery system for felodipine.e.e.e.

  • PDF