• Title/Summary/Keyword: Optimum solutions

Search Result 594, Processing Time 0.028 seconds

Novel Superabsorbent Hydrogel Based on Natural Hybrid Backbone: Optimized Synthesis and its Swelling Behavior

  • Pourjavadi, Ali;Soleyman, Rouhollah;Bardajee, Ghasem Rezanejade;Ghavami, Somayeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2680-2686
    • /
    • 2009
  • The synthesis of a novel superabsorbent hydrogel with natural hybrid backbone via graft copolymerization of acrylamide (AAm) onto kappa-carrageenan (kC, as a polysaccharide) and gelatin (as a protein) under classic thermal conditions is described. The Taguchi method as a strong experimental design tool was used for synthesis optimization. A series of hydrogels were synthesized by proposed conditions of Qualitek-4 Software. Considering the results of 9 trials according to analysis of variance (ANOVA), optimum conditions were proposed. The swelling behavior of optimum hydrogel was measured in various solutions with pH values ranging from 1 to 13. In addition, swelling kinetics, swelling in various organic solvents, various salt solutions and On–Off switching behavior were investigated. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetrical analysis (TGA). Surface morphology of the synthesized hydrogels was assessed by scanning electron microscope (SEM).

Exploration of static and free vibration resistance topologically optimal beam structure shapes using density design variables. (재료밀도 설계변수를 이용한 정적 및 자유진동 저항 위상최적 보의 형상 탐색에 관한 연구)

  • Lee, Dongkyu;Shin, Soo Mi
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.57-64
    • /
    • 2024
  • This study numerically compares optimum solutions generated by element- and node-wise topology optimization designs for free vibration structures, where element-and node-wise denote the use of element and nodal densities as design parameters, respectively. For static problems optimal solution comparisons of the two types for topology optimization designs have already been introduced by the author and many other researchers, and the static structural design is very common. In dynamic topology optimization problems the objective is in general related to maximum Eigenfrequency optimization subject to a given material limit since structures with a high fundamental frequency tend to be reasonable stiff for static loads. Numerical applications topologically maximizing the first natural Eigenfrequency verify the difference of solutions between element-and node-wise topology optimum designs.

Optimum design of rotor supported on floating ring journal bearing by the enhanced artificial life optimization algorithm (인공생명 알고리듬을 이용한 프로팅 링 저널 베어링 지지 축계의 최적설계)

  • Song, Jin-Dea;Suk, Ho-Il;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1034-1037
    • /
    • 2002
  • This paper presents an optimum design of rotor-bearing system using a hybrid method to compute the solutions of optimization problem. The present hybrid algorithm namely Enhanced Artificial Life Algorithm(EALA), is a synthesis of an artificial life algorithm(ALA) and the random tabu search(R-tabu) method. We applied EALA to the optimum design of rotor-shaft system supported by the floating ring journal bearings. we will propose the optimum shape of rotor, position and shape of bearings. Through this study, we investigate the reliability and usefulness of EALA.

  • PDF

Multi-criteria performance-based optimization of friction energy dissipation devices in RC frames

  • Nabid, Neda;Hajirasouliha, Iman;Petkovski, Mihail
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.185-199
    • /
    • 2020
  • A computationally-efficient method for multi-criteria optimisation is developed for performance-based seismic design of friction energy dissipation dampers in RC structures. The proposed method is based on the concept of Uniform Distribution of Deformation (UDD), where the slip-load distribution along the height of the structure is gradually modified to satisfy multiple performance targets while minimising the additional loads imposed on existing structural elements and foundation. The efficiency of the method is demonstrated through optimisation of 3, 5, 10, 15 and 20-storey RC frames with friction wall dampers subjected to design representative earthquakes using single and multi-criteria optimisation scenarios. The optimum design solutions are obtained in only a few steps, while they are shown to be independent of the selected initial slip loads and convergence factor. Optimum frames satisfy all predefined design targets and exhibit up to 48% lower imposed loads compared to designs using a previously proposed slip-load distribution. It is also shown that dampers designed with optimum slip load patterns based on a set of spectrum-compatible synthetic earthquakes, on average, provide acceptable design solutions under multiple natural seismic excitations representing the design spectrum.

Biosorption Characteristics of Heavy Metal by Algae, Spirulina in the Batch Reactor (회분식 반응기에서 조류 Spirulina 균체내 중금속 흡착 특성)

  • 신택수;주소영;김재용
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.112-122
    • /
    • 1998
  • In recent years the accumulation of heavy metals in microorganisms, the biosorption has received much attention because of various environmental application. We have been to research the biosorption characteristics using algae, Spirulina, for the removal of heavy metal ions in industrial and polluted waters. In the adsorption of single heavy metal ions, the adsorption equilibrium was reached within 10min., and optimum pH and reaction temperature were 4.5-5 and 30-35$\circ $C, respectively. Under the above conditions, the maximum amounts of Pb, Cu, and Cd adsorbed to the unit weight of Spirulina were 107.6mg/g, 78.0mg/g, and 65.6mg/g, and three values were 1.45, 1.56, and 1.26 times higher than those adsorbed to the unit weight of activated carbon under same conditions. The adsorption kinetics of Pb, Cu, and Cd were fitted very well to the Freundlich isotherm and BET isotherm. Biosorption experiments in single ion solutions and binary ions solutions showed higher removal efficiency in the single ion solutions than in binary ions solutions.

  • PDF

Adaptive minimum-time optimal control of robot manipulator (로보트 매니퓰레이터에 대한 적응 최소시간 최적제어)

  • 정경훈;박정일;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.258-262
    • /
    • 1990
  • Several optimum control algorithms have been proposed to minimize the robot cycle time by velocity scheduling. Most of these algorithms assume that the dynamic and kinematic characteristics of a manipulator are fixed. This paper presents the study of a minimum-time optimum control for robotic manipulators considering parameter changes. A complete set of solutions for parameter identification of the robot dynamics has been developed. The minimum-time control algorithm has been revised to be updated using estimated parameters from measurements.

  • PDF

Optimum Structural Design of Panel Block Considering the Productivity (생산성을 고려한 평블록의 최적 구조 설계)

  • Lee, Joo-Sung;Kim, Jong-Mun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.139-147
    • /
    • 2007
  • The ultimate goal of structural design is to find the optimal design results which satisfies both safety and economy at the same time. Optimum design has been studied for the last several decades and is being studied. in this study, an optimum algorithm which is based on the genetic algorithm has been applied to the multi-object problem to obtain the optimum solutions which minimizes structural weight and construction cost of panel blocks in ship structures at the same time. Mathematical problems are dealt at first to justify the reliability of the present optimum algorithm. And then the present method has been applied to the panel block model which can be found in ship structures. From the present findings it has been seen that the present optimum algorithm can reasonably give the optimum design results.

Optimum Design of Journal Bearings Using Simulated Annealing Method (모사 어닐링법을 이용한 저널 베어링의 최적 설계)

  • Goo, H.E.;Song, J.D.;Lee, S.J.;Yang, B.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.45-52
    • /
    • 2004
  • This paper describes the optimum design for journal bearings by using simulated annealing method. Simulated annealing algorithm is an optimization technique to calculate global and local optimum solutions. Dynamic characteristics of the journal bearing are calculated by using finite difference method (FDM), and these values are used for the procedure of journal bearing optimization. The objective is to minimize the resonance response (Q factor) of the simple rotor system supported by the journal bearings. Bearing clearance and length to diameter ratio are used as the design variables.

  • PDF

A Study on the Optimum Welding Conditions for Reducing the Depth of Indentation of Surface in Spot Welding (점용접 시 압흔 깊이 감소를 위한 최적 용접조건 선정에 관한 연구)

  • 서승일;이재근;장상길;차병우
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.57-64
    • /
    • 1996
  • In this paper, authors are trying to find optimum spot weldig conditions to minimize indentation of the plate surface which is crucial to quality of stainless rolling stocks. At first, to derive a simple equation to estimate the depth of indentation, a simplified one-dimensional bar model is proposed and validity of the model is confirmed by experiments. And also, to find proper welding conditions giving satisfied tensile strength of the welded joint, a simple formula is derived referring to the standard spot welding conditions by AWS. Optimization problem is formulated to find welding conditions such as welding current, time and applied force which give minimum indentation and proper tensile strength of joint, and solutions are found out. According to the results, the depth of indentation can be expressed by applied electrode froces and it can be shown that an optimum applied force exists.

  • PDF

Automated design of optimum longitudinal reinforcement for flexural and axial loading

  • Tomas, Antonio;Alarcon, Antonio
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.149-171
    • /
    • 2012
  • The problem of a concrete cross section under flexural and axial loading is indeterminate due to the existence of more unknowns than equations. Among the infinite solutions, it is possible to find the optimum, which is that of minimum reinforcement that satisfies certain design constraints (section ductility, minimum reinforcement area, etc.). This article proposes the automation of the optimum reinforcement calculation under any combination of flexural and axial loading. The procedure has been implemented in a program code that is attached in the Appendix. Conventional-strength or high-strength concrete may be chosen, minimum reinforcement area may be considered (it being possible to choose between the standards ACI 318 or Eurocode 2), and the neutral axis depth may be constrained in order to guarantee a certain sectional ductility. Some numerical examples are presented, drawing comparisons between the results obtained by ACI 318, EC 2 and the conventional method.