• Title/Summary/Keyword: Optimum solutions

Search Result 594, Processing Time 0.023 seconds

SOME ANALYSES ON A PROPOSED METHOD OF THE OPTIMAL NETWORK SELECTION PROBLEM

  • Lim, Jong Seul
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.539-546
    • /
    • 2014
  • This paper introduces the approximation and a proposed method to deal the optimum location network selection problem such that the total cost is minimized. For the proposed method, we derived a feasible solution and the variance. To compare the performances of the approximation and the proposed method, computer simulation is also implemented. The result showed the solutions being optimum with 74% for the proposed method and 57% for the approximation. When the solutions is not optimum, maximum and average deviations are below 4% and 2% respectively. The results indicate a slightly better performance of the proposed method in a certain case.

Development of an Enhanced Artificial Life Optimization Algorithm and Optimum Design of Short Journal Bearings (향상된 인공생명 최적화 알고리듬의 개발과 소폭 저널 베어링의 최적설계)

  • Yang, Bo-Suk;Song, Jin-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.478-487
    • /
    • 2002
  • This paper presents a hybrid method to compute the solutions of an optimization Problem. The present hybrid algorithm is the synthesis of an artificial life algorithm and the random tabu search method. The artificial life algorithm has the most important feature called emergence. The emergence is the result of dynamic interaction among the individuals consisting of the system and is not found in an individual. The conventional artificial life algorithm for optimization is a stochastic searching algorithm using the feature of artificial life. Emergent colonies appear at the optimum locations in an artificial ecology. And the locations are the optimum solutions. We combined the feature of random-tabu search method with the conventional algorithm. The feature of random-tabu search method is to divide any given region into sub-regions. The enhanced artificial life algorithm (EALA) not only converge faster than the conventional artificial life algorithm, but also gives a more accurate solution. In addition, this algorithm can find all global optimum solutions. The enhanced artificial life algorithm is applied to the optimum design of high-speed, short journal bearings and its usefulness is verified through an optimization problem.

Oscillation Phenomena of the discrete Optimum Solutions and control (불연속 최적해의 흔들림 현상과 제어에 관한 연구)

  • Choi, Chang-Koon;Jin, Ho-Kyun;Kim, Jong-Soo;Lee, Hwan-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.9-16
    • /
    • 1994
  • In the discrete optimum design, occasionally, the solutions oscillate between the feasible and the infeasible resions during the series of redesigns of members with discrete sections. This phenomenon may be caused inherently by the discontinuity of variables of commercially available sections in the database. In this paper, in-depth investigation into the oscillation in the discrete optimization and its control has been conducted. When the structure is optimized through element optimization, the oscillation can be divided into two categories, local and global oscillations. An algorithm which controls these phenomena is suggested and numerical examples demonstrate the oscillation in optimum solutions and the effectiveness of the control strategy suggested here.

  • PDF

A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.153-165
    • /
    • 2020
  • The effect of soil foundation plays active role in optimum design of steel space frames when included. However, its influence on design can be calculated after a long iterative procedure. So it requires longer computer time and more computational effort if it is done properly. The main purpose of this study is to investigate how these effects can be calculated in more practical way in a shorter time. The effects of semi-rigid column bases are taken into account in optimum design of steel space frames. This study is carried out by using JAYA algorithm which is a novel and practical method based on a single revision equation. The displacement, stress and geometric size constraints are considered in the optimum design. A computer program is coded in MATLAB to achieve corporation with SAP2000-OAPI (Open Application Programming Interface) for optimum solutions. Four different steel space frames including soil structure interaction taken from literature are investigated according to different semi-rigidly supported models depending on different rotational stiffness values. And the results obtained from analyses are compared with the results available in reference studies. The results of the study show that semi-rigidly supported systems in the range of appropriate rotational stiffness values offer practical solutions in a very short time. And close agreement is obtained with the studies on optimum design of steel space frames including soil effect underneath.

Optimum Design of High-Speed, Short Journal Bearings by Enhanced Artificial Life Algorithm (향상된 인공생명 알고리듬에 의한 고속, 소폭 저널 베어링의 최적설계)

  • Yang, Bo-Suk;Song, Jin-Dae
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.698-702
    • /
    • 2001
  • This paper presents a combinatorial method to compute the solutions of optimization problem. The present hybrid algorithm is the synthesis of an artificial life algorithm and the random tabu search method. The hybrid algorithm is not only faster than the conventional artificial life algorithm, but also gives a more accurate solution. In addition, this algorithm can find all global optimum solutions. And the enhanced artificial life algorithm is applied to optimum design of high-speed, short journal bearings and the usefuless is verified through this example.

  • PDF

A comparative study on optimum design of multi-element truss structures

  • Artar, Musa
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.521-535
    • /
    • 2016
  • A Harmony Search (HS) and Genetic Algorithms (GA), two powerful metaheuristic search techniques, are used for minimum weight designs of different truss structures by selecting suitable profile sections from a specified list taken from American Institute of Steel Construction (AISC). A computer program is coded in MATLAB interacting with SAP2000-OAPI to obtain solution of design problems. The stress constraints according to AISC-ASD (Allowable Stress Design) and displacement constraints are considered for optimum designs. Three different truss structures such as bridge, dome and tower structures taken from literature are designed and the results are compared with the ones available in literature. The results obtained from the solutions for truss structures show that optimum designs by these techniques are very similar to the literature results and HS method usually provides more economical solutions in multi-element truss problems.

Optimum Solutions of Minimum Error Entropy Algorithm (최소 오차 엔트로피 알고리듬의 최적해)

  • Kim, Namyong;Lee, Gyoo-yeong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.3
    • /
    • pp.19-24
    • /
    • 2016
  • The minimum error entropy (MEE) algorithm is known to be superior in impulsive noise environment. In this paper, the optimum solutions and properties of the MEE algorithm are studied in regard to the robustness against impulsive noise. From the analysis of the behavior of optimum weight and factors related with mitigation of influence from large errors, it is revealed that the magnitude controlled input entropy plays the main role of keeping optimum weight of MEE undisturbed from impulsive noise. In the simulation, the optimum weight of MEE is shown to be the same as that of MSE criterion.

Multi-objective optimization of double wishbone suspension of a kinestatic vehicle model for handling and stability improvement

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.633-638
    • /
    • 2018
  • One of the important problems in the vehicle design is vehicle handling and stability. Effective parameters which should be considered in the vehicle handling and stability are roll angle, camber angle and scrub radius. In this paper, a planar vehicle model is considered that two right and left suspensions are double wishbone suspension system. For a better analysis of the suspension geometry, a kinestatic model of vehicle is considered which instantaneous kinematic and statics relations are analyzed simultaneously. In this model, suspension geometry is considered completely. In order to optimum design of double wishbones suspension system, a multi-objective genetic algorithm is applied. Three important parameters of suspension including roll angle, camber angle and scrub radius are taken into account as objective functions. Coordinates of suspension hard points are design variables of optimization which optimum values of them, corresponding to each optimum point, are obtained in the optimization process. Pareto solutions for three objective functions are derived. There are important optimum points in these Pareto solutions which each point represents an optimum status in the model. In other words, corresponding to any optimal point, a specific geometric position is determined for the suspension hard points. Each of the obtained points in the Pareto optimization can be selected for a special design purpose by designer to create an optimum condition in the vehicle handling and stability.

Optimum Design of journal Bearing by the Enhanced Artificial Life Optimization Algorithm (인공생명 알고리듬을 이용한 저널 베어링의 최적설계)

  • 송진대;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.400-403
    • /
    • 2004
  • This paper presents an optimum design of journal bearings using a hybrid method to find the solutions of optimization problem. The present hybrid algorithm, namely Enhanced Artificial Life Algorithm(EALA), is a synthesis of an artificial life algorithm(ALA) and the random tabu search(R-tabu) method. EALA is applied to the optimum design of journal bearings supporting simple rotor. The applicability of EALA to optimum design of rotor-bearing system is exemplified through this study.

  • PDF

Group Scheduling Problem in Multi - Stage Manufacturing Systems with Dependent Setup time (준비시간(準備時間)이 종속인 다단계(多段階) 생산(生産) 시스템의 집단일정계획(集団日程計劃))

  • No, In-Gyu;Nam, Hui-Yeol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.2
    • /
    • pp.33-44
    • /
    • 1986
  • This research is concerned with group scheduling problems in multi-stage manufacturing system with dependent setup time. The objective of the research is to develop and evaluate a heuristic algorithm for determining group sequence and job sequence within each group to minimize total tardiness in multi-stage manufacturing systems with sequence dependent group setup time. The group scheduling heuristic algorithm is developed and evaluated by comparisons with twenty-seven problems with the known optimum solutions and 144,000 random schedules of a large variety problems. The results indicate that the proposed heuristic algorithm gets the same optimum solutions for the problems and also provides the good solutions in comparison with the random schedules of the large variety problems. A numerical example is given to illustrate the heuristic algorithm.

  • PDF