• Title/Summary/Keyword: Optimum harvest time

Search Result 164, Processing Time 0.023 seconds

Effect of Harvest Time on Seed Quality of Silage Corn Inbreds and Hybrids

  • Lee, Suk-Soon;Yun, Sang-Hee;Soo, Jung-Moon;Min, Hwang-Kee;Ryu, Si-Hwan;Park, Jong-Yeol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.361-367
    • /
    • 2002
  • In order to determine the optimum harvest time for the seed production of inbreds and hybrids in silage corn, the ears of sib-pollinated 'KS5', 'KS7rhm', and 'Ga209' and cross-pollinated 'KS5' $\times$ 'KS6' (Suwon19), 'KS7 rhm' $\times$ 'KSl17' (Suwonok), and 'Ga209' $\times$ 'DB544'(Kwanganok) were harvested at the one-week intervals from 4 to 10 weeks after silking. The optimum harvest time for the seed production for 'KS5', 'KS5' $\times$ 'KS6', 'KS7 rhm', and 'KS7rhm' $\times$ 'KS117' was 7 weeks after silking considering both emergence rate and plumule growth in cold test. Although earlier harvested seeds showed similar germination rate as the seeds harvested at the optimum time at $25^{\circ}C$, their emergence rate were lower in cold test. Seed weight and $\alpha$-amylase activity of earlier harvested seeds were lower compared to those of seeds harvested at the optimum time, while leakage of total sugars and electrolytes were higher. However, the later harvested seeds showed lower germination rates at $25^{\circ}C$ and emergence rates in cold test probably due to the lower $\alpha$-amylase activity although they showed increased seed weight and reduced leakage of total sugars and electrolytes. In contrast, the emergence rate of 'Ga209' and 'Ga209' $\times$ 'DB544' in cold test increased up to 10 weeks after silking probably due to the increased seed weight and $\alpha$-amylase activity and reduced sugar and electrolyte leakages during the germination. The cross-pollinated F$_1$ hybrid seeds showed higher germination and emergence rates at $25^{\circ}C$ and in cold test, and higher plumule growth and $\alpha$-amylase activity compared to those of sib-pollinated inbreds.

A Study on the Changes in Grain Weight, Moisture Content, Shattering Force, Milling Ratio and Apparant Physical Quality of Rice with Harvesting Time (수도의 수확적기결정을 위한 기초적 연구)

  • Yong-Woong Kwon;Jin-Chul Shin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.1-9
    • /
    • 1980
  • To determine the optimum harvest time of recent rice varieties from Indica/Japonica remote crosses, leading varieties Suweon 264 and Milyang 23 were tested for the changes in dry matter weight and moisture content of grain, shattering, shelling ratio, milling ratio, and apparant physical quality during grain development at 5 day-intervals from 20 days to 55 days after heading. The results are summarized as follows: 1. Grain weight (dry matter) reached its maximum (physiological maturity) at 30 days after flowering (DAF) in Suweon 264, and at 35 days in Milyang 23, and thereafter it did not change significantly until 55 DAF. 2. Time course of decrease in grain moisture content (Y, %) during maturation (X, DAF) consisted of two linear phases, i.e. a fast and a slow period: Y=68.245-1.33X until 34DAF, and Y=23.025-0.470X until 55DAF after 34DAF in Suweon 264; Y=73.62-1.634X until 24.5DAF, and Y=33.59-0.570X until 55DAF after 24.5DAF in Milyang 23. Two varieties showed the same grain moisture content of 28% (wet basis) at physiological maturity in spite of the distinct differences in the heading date, time of physiological maturity and thereby ripening climate. 3. Force to shatter a grain ranged about 90 to 100g in Milyang 23, and about 200 to 250g in Suweon 264 and in a Japonica variety, Jinheung. The force, however, did not change significantly with harvest time from 35DAF to 50DAF. 4. The changes in the ratios of shelling, milling, broken rice and tinted rice with harvest time were insignificant during a period from 35DAF to 55DAF. However, ratios of green rice and white belly rice decreased significantly with delay in harvest time during 10 days after physiological maturity. 5. The best time of harvest for maximum yield and good quality is thought to be 10 days after physiological maturity, and grain moisture content at this time was about 20% on wet basis.

  • PDF

Studies on the Characteristics of Seed Germination of Lycoris genera (Lycoris속(屬)의 종자발아(種子發芽) 특성(特性) 연구(硏究))

  • Park, Yun-Jum;Chung, Youn-Ohk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.2
    • /
    • pp.163-171
    • /
    • 1996
  • The influences of temperature, harvest time, sowing time, seeding media, moisture content of media and light on the seed germination of Lycoris are as follows, Both L. koreana and L. aurea had over 90% seed setting, and seed maturity came in September or early October. It took six months to have over 60% seed germination. The optimum germination temperature was $25^{\circ}C$, and the alternating treatment was effective at $20{\rightleftarrows}25^{\circ}C$. The optimum harvest-time was around Sep. 20, and the optimum seed-time was immediately after havest. The optimum seeding media was sand loam, and the optimum moisture content was PF 1. 9/400ml seeding media. The dark condition was more effective for the seed germination than the light condition.

  • PDF

Determination of the Optimum Time of Harvest in Winter Rape (겨울 유채의 적정수확시기 결정에 관한 연구)

  • Chae, Y.A.;Kwon, Y.W.;Kwon, B.S.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.81-85
    • /
    • 1980
  • Field experiment was conducted to determine the optimum harvesting time in winter rape (Brassica napus L.) by investigating the percent oil, 1, 000 seed weight, seed yield, dehiscent pod ratio and oil yield at 46, 50, 54, 58, 62, 66 and 70 days after flowering. Variation of all characters with days after flowering could be explained significantly by second degree polynomial equations. Percent oil and 1, 000 seed weight increased until 62 days after flowering and thereafter these traits decreased, while seed yield increased to 58 days after flowering and thereafter this trait decreased. This controversy was due to the drastic increase in dehiscent pods beyond 58 days after flowering which brought loss in seed yield. These results suggest that optimum harvesting time is 58 days after flowering and it should not be later than 60 days after flowering.

  • PDF

Sugars, Soluble Solids, and Flavor of Sweet, Super Sweet, and Waxy Corns during Grain Filling

  • Lee, Suk-Soon;Yun, Sang-Hee;Kim, Jae-Hyeun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.267-272
    • /
    • 1999
  • In order to determine the optimum harvest time of vegetable corns, the changes in sugars, soluble solids, and flavor of kernels of sweet (cv. ‘Golden Cross Bantam 70’), super sweet (cv. ‘Cocktail E-51’), and waxy corns (cv. ‘Chalok 2’) were observed at different ripening stages. Sucrose was a major sugar in the sweet and super sweet corns and the content increased from 15 to 21 and 27 days after silking (DAS), respectively and then decreased. Glucose and fructose contents of sweet and super sweet corns tended to decrease with kernel maturity. Total sugar content of the sweet corn analyzed by the anthrone method increased rapidly from 15 to 21 DAS, while that of the super sweet and the waxy corns increased slowly up to 24 and 26 DAS, respectively and decreased thereafter. The content of soluble solids in sweet corn was much higher than that of super sweet corn. Starch content of the sweet corn increased slowly from 15 to 33 DAS, while that of the super sweet corn increased a little rapidly from 15 to 21 DAS and then leveled off to 33 DAS. Starch content of the waxy corn increased continuously from 21 to 38 DAS. There was a positive correlation between the sum of individual sugars (sucrose, glucose, and fructose) and soluble solids in both sweet and super sweet corns, while the content of soluble solids was not related to the sum of individual sugars or total sugars. The flavor rate of sweet and super sweet corns maintained high between 21 and 27 DAS and that of waxy corn decreased from 24 to 33 DAS. The optimum harvest time for sweet, super sweet, and waxy corns was thought to be 21 to 24 DAS considering sugar and starch contents, flavor, and marketing.

  • PDF

Softening of Astringent Persimmon (Diospyros kaki Thunb.) as Affected by Harvest Time, Temperature, and Ethephon Treatment (수확기, 온도 및 Ethephon 처리에 따른 떫은감 (Diospyros kaki Thunb.)의 연화)

  • Park, Seo-Jun;Hong, Seong-Sig;Lee, Chong Suk
    • Horticultural Science & Technology
    • /
    • v.18 no.3
    • /
    • pp.395-398
    • /
    • 2000
  • This study was conducted to evaluate the effect of harvest time, temperature and ethephon on the softening of astringent persimmon 'Cheongdobansi'. The persimmon was harvested on Sep. 21 (early season harvesting) and Oct. 11 (optimum season harvesting). Quality changes were evaluated at 10, 15 and $20^{\circ}C$ after ethephon treatment. Seventy percent of hardness decrease occurred during the first 2 days of treatment at 15 and $20^{\circ}C$, and hardness was slowly decreased after 6 days. The treatment of $10^{\circ}C$ was not effective on inducing fruit softening. Soluble tannin content was sharply decreased 6 days after ethephon treatment at 15 and $20^{\circ}C$ regardless the harvest time, whereas this was much slower in control. Hunter 'L' and 'b' values were increased until 2 days, and then decreased with the early harvested persimmon. The Hunter values were decreased until the 8th day of storage in fruit harvested at optimum season.

  • PDF

A Study on Transition of Rice Culture Practices during Chosun Dynasty through Old References. VIII. Harvest and Storage (주요 고농서를 통한 조선시대의 도작기술 전개 과정 연구 VIII. 수확 저장 요령)

  • Lee, Sung-Kyum;Guh, Ja-Ok;Lee, Eun-Woong;Lee, Hong-Suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.299-303
    • /
    • 1992
  • Methods for harvesting and storage of rice were also originally introduced from the ancient China like other practices of agricultural techniques. Thus, optimum time or rice harvesting was adopted by appropriate draining to prevent the losses, and efficient tools were utilized for harvesting and manufacturing. In addition, our unique and original techniques for rice storage were learned and handed down, which prevented winds and rains, and allowed good ventilation. In the 15th and 16th centuries, treatment of smartweed extracts as emphasized to prevent insect damage for stored barley and rice cutting immediately at harvest was encouraged to prevent shattering of rice grains. In the 18th and 19th centuries, means for prevention of damages by water, insects and rats when grains stored in the field were suggested. Also, studies for ecology of various rice cultivars and storage techniques for a long period of time were necessarily emphasized to assume the optimum time of harvest regionally and to cooperatively work timely.

  • PDF

Determination of Harvesting Time and Effect of Diquat Treatment in Sesame Cropped After Winter Barley (맥류작 참깨의 수확기 결정과 건조제 처리의 효과)

  • Lee, H.J.;Kwon, Y.W.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.2
    • /
    • pp.64-67
    • /
    • 1980
  • Field experiments were conducted to determine the optimum harvesting time and to evaluate the effect of Diquat spray in late seeded sesame, cultivar 'Suweon 9'. Sesame seed yield reached a plateau from Sept. 18 harvest when seed number was maximum. Thousand seed wt. increased to Sept. 29 harvest. As harvesting was delayed moisture content of capsule decreased and capsule dehiscence increased. Capsule dehiscence did not start until its moisture content dropped below 70%. Optimum harvesting might begin from the time which moisture content of capsule dropped below 70%, leaf senescence reached upper node, and 50% of capsules lost green. About 5% increase in seed weight after defoliation was estimated to be translocation from capsule wall. Diquat spray with 0.3% and 0.5% (v/v) solution of commercial Reglone (20%in A.I.) decreased rapidly capsule moisture content and promoted seed shattering. Dehiscence in 90% capsules was noted at seven days after Diquat spray. Diquat spray as a harvest aid could accelerate sesame desiccation up to 2 wks from normal field condition.

  • PDF

An Establishment of the Optimum Sowing Time for a Machine Harvest of Perilla for Seed (종실용 들깨의 기계수확에 적합한 최적 파종시기 설정)

  • Kwak, Kang Su;Han, Won Young;Ryu, Jong Soo;Bae, Jin Woo;Park, Jin Ki;Baek, In Youl
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.370-375
    • /
    • 2018
  • In order to promote the mechanized cultivation of perilla for seed, which has been increasing in cultivation area and production recently as demand increases according to the health-functional effects, we carried out this experiment to determine the optimum sowing time of perilla to minimize the seed loss at harvest and increase the yield. We used two different types of perilla varieties, 'Sodam(small-branch)' and 'Deulsaem(multi-branch)', and the sowing time was June 15, June 30, July 15 and August 1. As the sowing time is late, days of growth from sowing to flowering were shortened, and they were shortened from 14, 26 and 31~32 days on June 30, July 15 and August 1 as compared with June 15, respectively. And, the stem length and culm diameter were shortened or tapered and the number of nodes tended to decrease. The number of effective branch was 82%, 61% and 56% on June 30, July 15 and August 1 as compared with June 15, respectively. Accordingly, it seems to make against in securing the yield from July 15. And, the lowest cluster height was generally shorter as the sowing time is late, and the height was below 15cm on July 15 and August 1. It seems that this may work against the machine harvest. There was a high degree of significance between the sowing time and the yield. Although, the total yield was not statistically significant among June 15, June 30 and July 15, the ratio of shattering seed at harvest was in order of July 15, August 1(30.3%)> June 15(15.3%)> June 30(13.5%). Therefore, the net yield except for shattered seed was higher in order of June 30${\geq}$ June 15> July 15> August 1. This tendency was characteristic regardless of variety and sowing method. And, the protein content in perilla seed increased as the sowing time was delayed, and the content was the highest on August 1. The content of crude fat was relatively high on June 15 and July 15 in 'Sodam', and June 30 and July 15 in 'Deulsaem', respectively. And, the content of linolenic acid was found to be the highest on August 1. As a result, the optimal sowing time for machine harvest of perilla for seed is about June 30. At this time, it is determined that the sowing time is the most suitable to be advantageous in increasing the yield of perilla seed, while minimizing the seed loss due to the shattering at harvest.

Effect of Harvest Time and Cultivars on Forage Yield and Quality of Whole Crop Barley (청보리 품종의 적정 수확시기 및 사료가치 평가)

  • Yun, Seong-Kun;Park, Tae-Il;Seo, Jae-Hwan;Kim, Kyeong-Hoon;Song, Tai-Hua;Park, Ki-Hun;Han, Ouk-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.2
    • /
    • pp.121-128
    • /
    • 2009
  • A field study was conducted from 2007 to 2008 at Department Rice and Winter Cereal Crop, NICS, RDA, to evaluate the effects of harvest time and cultivar on forage yield and quality. Four whole crop barley cultivars ('Youngyang', 'Wooho', 'Yuyeon' and 'Dami') were selected and harvested on five separate growth stages (heading, and intervals of 1, 2, 3 and 4 weeks after heading) in split plot design with three replications. Results from this experiment indicated significant differences due to harvest time and cultivar in dry matter yield and total digestible nutrients (TDN) yield for forage. The interaction between harvest time and cultivar was not significant. The TDN yield trends were increasing with later harvest time due to higher dry matter yield and TDN content. This experiment provides some interesting results with respects to optimum harvest time, feed value and ultimately yield for the different whole crop barley cultivars.