• Title/Summary/Keyword: Optimum grinding conditions

Search Result 54, Processing Time 0.026 seconds

Surface Grinding of Tungsten Carbide for High Quality Unign Diamond Wheel

  • Seoung-Jung Heo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.12-24
    • /
    • 1995
  • Various surface grinding experiments using resin bonded diamond abrasive wheels are carried out for tungsten carbide materials in order to minimize the damage on the ground surface and to purse the precise dimension compared to conventional grinding machine. When grinding quality is constant, theoretical grinding effect is changed according to the speed of workpiece. Accordingly, grinding forces, which are Fn, Ft, were analyzed for the machining processes of tungsten-carbide material to obtain optimum grinding conditions. Brief investigation is carried out to decrease the dressing efficiency of resinoid bonded diamond grinding wheel to grind tungsten-carbide. Truing is also carried out to provide a desired shape on a wheel or to correct a dulled profile. High quality in dimensional accuracy and surface are often required as a structural components, therefore 3-points bending test is carried out to check machining damage on the ground surface layer, which in one of sintered brittle material. From this experimental study, some useful machining data and information to determine proper machining condition for grinding of tungsten-carbide materials are obtained.

  • PDF

Selection of CBN-Wheel for Internal Grinding of LM-Guide (LM가이드 내경연삭을 위한 CBN 숫돌 선정)

  • Koo, Yang;Heo, Jung-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.40-45
    • /
    • 2003
  • In this paper, to choose the optimum CBN wheel for Internal Grinding at LM Guide, among 7 types of CBN-wheels, the 2 types of CBN-wheels, which were the macrofracture CBN wheel and the microfracture CBN wheel, have been used, and the SCM420H have been used as the workpiece. The working conditions in the grinding experiments were depth-of-cut, table speed, and spindle speed for 4 types of the CBN grinding wheels, 2 types of the lubrications. By the experiments, the loading effect of the microfracture types of the CBN-wheel needed a short dressing interval and resulted in grinding wheel wear and bad surface roughness. However, a macrofracture type of CBN-wheel with the concentration of 100, CB120Q100V showed the best surface roughness quality at a low table speed for internal grinding at LM-guide.

  • PDF

Optimum Working Conditions for the Minimum of Burr Formation in Grinding (연삭시 버어 생성의 최소화를 위한 최적 가공 조건)

  • 이광영;허선철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.171-181
    • /
    • 2001
  • Recently, the development of CNC machine tools seems to bring about progressional high speed, precision and automation in cutting processing, but is unlikely to avoid the generation of burr arising from plastic deformation, which may result in deterioration of improvement in the precision and productivty of products. In this study, Experiment has been carried out to prevent and decrease the grinding burr under various working conditions ; working speed, side cutting edge, back rake angle, disengage angel.

  • PDF

Grinding Characteristics of Ceramic using the Experimental Plan Method (실험계획법을 이용한 세라믹재료의 연삭특성)

  • 정을섭;김성청;소의열;이근상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.938-942
    • /
    • 2002
  • This paper has studied to obtain the grinding characteristics and optimal grinding renditions of ceramic materials in the grinding with diamond wheel by the experimental plan method. The load on wheel by varying the feed rate was related with the surface roughness due to the minute destruction phenomenon of grains for the Si$_3$${N^4} and Zr{O_2}$. The depth of cut is related with the surface roughness because the grinding is carried out by grain shedding process due to the brittle fracture phenomenon for the ${Al_2}{O_3}$. The major factors affecting the surface roughness and the optimum grinding conditions were obtained with minimum experiments using the experimental plan method.

  • PDF

Optimum Positioning of Rests Considering Compliance of Grinding Machine, Workpiece and Rests in Cylindrical Traverse Grinding (가로원통연삭시 연삭기와 공작물 및 방진구의 컴플라이언스를 고려한 방진구의 최적위치 선정)

  • 서장렬;이선규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.173-180
    • /
    • 2000
  • In the process of grinding a long slender type workpiece, such as ballscrew, by the external cylindrical grinding machine, the cylindricity of the workpiece depends on the distance of rests, the stiffness of supports, the diameter and material of workpiece. Conventionally the process needs to be supported by one or more rests to prevent static deflection and vibration. In this paper, the optimal position of the rests was investigated in order to minimize the cylindricity due to the static deflection, by taking compliance of the workpiece and structure into account. In order to obtain the optimal position of rests, a new modeling that is considering the spring effect of all support elements was established. Since it is so complicated to obtain the optimal position analytically for various conditions due to discontinuity, a genetic algorithm u as utilized.

  • PDF

Evaluation on the Optimum Grinding of Aspheric Surface Micro Lens for Camera Phone (휴대폰 카메라용 비구면 마이크로 렌즈 최적 연삭가공 평가)

  • Baek Seung-Yub;Lee Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • As consumers in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the ground surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

Optimization of Process Variables for Grinding of Ibuprofen using Response Surface Methodology (반응표면분석법을 이용한 이부프로펜의 분쇄공정변수의 최적화)

  • Sim, Chol-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.685-691
    • /
    • 2013
  • Ibuprofen, non-steroidal anti-inflammatory drugs; NSAIDs, is a highly crystalline substance with the pharmaceutical properties of poor solubility and low bioavailability. The size reduction of ibuprofen is needed to improve the solubility. The objective of this study is to optimize the grinding condition of ibuprofen. Grinding of ibuprofen was carried out using a planetary mill. Grinding parameters were optimized using Box-Behnken experimental design method. The physical characteristics of ground ibuprofen were investigated for the particle size by particle size analyzer, for the crystal size by X-ray diffraction (XRD), and for the tensile strength by tensile/compression tester. The optimum conditions for the milling of ibuprofen were 290 rpm of the revolution number of mill, 24.6 g of the weight of sample, and 10 minutes of grinding time. The measured value of the particle size of ground ibuprofen at these optimum conditions was $13.5{\mu}m$. The results showed that the crystal size of ibuprofen was reduced by the planetary milling process. In case the relative density of the tablets formulated of ground ibuprofen was range of 0.85~0.90, the tensile strength of them was range of 1$2{\sim}14Kg_f/cm^2$.

A Study on the Optimal Grinding Condition of Ceramics using the Design of Experiments (실험 계획법을 이용한 세라믹 재료의 최적 연삭 조건에 관한 연구)

  • Jeong, Eul-Seop;Kim, Seong-Cheong;So, Ui-Yeol;Lee, Geun-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.141-146
    • /
    • 2002
  • This paper has studied to obtain the grinding characteristics and optimal grinding conditions of ceramic materials in the grinding with diamond wheel by design of experiments. The load on wheel by varying the feed rate was related with the surface roughness due to the minute destruction phenomenon of grains for the $Si_3\;N_4\;and\;ZrO_2$. The depth of cut is related with the surface roughness because the grinding is carried out by grain shedding process due to the brittle fracture phenomenon for the $A1_2\;O_3$. The major factors affecting the surface roughness and the optimum grinding conditions were obtained with minimum experiments using design of experiments.

Ultra-precision Free-form Surface Grinding of WC Core (초경 금형의 자유 곡면 초정밀 연삭)

  • Park, Soon-Sub;Hwang, Yeon;Kim, Geon-Hee;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.64-71
    • /
    • 2009
  • Cylindrical lens core for optical transceiver was designed and machined. With the lens design data, WC asymmetric core surface data were generated for non-revolutional ultra-precision grinding. Grinding process for optimum machining conditions of target surface was studied in terms of surface roughness and form profile. We used experimental results to optimize turbine speed, feed-rate and depth of cut with durable grinding wheel wear. Ground WC cores were measured contact type profilers and verified.

Study on Dressing Conditions for Creep-feed in Cubic Boron Nitride Grinding of OrthoMTA Compacters (OrthoMTA 컴팩터의 크리프피드 CBN 연삭을 위한 드레싱 조건 연구)

  • Maeng, Heeyoung;Baek, Eun-Pyo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.69-74
    • /
    • 2014
  • An OrthoMTA compacter is made by machining a Ni-Ti alloy wire using tapered helix creep-feed grinding machines. This aim of this study is to find the optimal dressing conditions to sharpen the corner of a cubic boron nitride (CBN) wheel. On the basis of the results of various experiments, it is verified that the most important factors in dressing are the dressing depth and feeding method, whereas the feed rate has less importance for producing a smaller corner R value. The study also finds the optimum dressing depth to reduce the dressing time, a feeding speed and method to stabilize the machining, and the mesh grade for the CBN wheel to make the groove of the compacter deeper.