• Title/Summary/Keyword: Optimum cutting conditions

검색결과 144건 처리시간 0.033초

DEVELOPMENT OF A VIRTUAL MACHINING SYSTEM FOR ESTIMATION OF CUTTING PERFORMANCE

  • Ko, Jeong-Hoon;Cho, Dong-Woo;Yun, Won-Soo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.288-294
    • /
    • 2001
  • Present CAM technology cannot provide important physical property such as cutting farce and machined surface. Thus, the selection of cutting conditions still depends on the experience of an expert or on the machining data handbook in spite of the developed CAM technology. This paper presents an advanced methodology to help the worker to determine optimum cutting condition for CHC machining that excludes the need for expertise of machining data handbook. The virtual machining system presented in this paper can simulate the real machining states such as cutting farce and machined surface error. And virtual machining system can schedule feed rate to adjust the cutting force to the reference force.

  • PDF

Linear cutting machine test for assessment of the cutting performance of a pick cutter in sedimentary rocks (퇴적층 암석의 픽 커터 절삭성능 평가를 위한 선형절삭시험)

  • Jeong, Hoyoung;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제20권1호
    • /
    • pp.161-182
    • /
    • 2018
  • We carried out a series of linear cutting machine tests to assess the cutting performance of a pick cutter in sedimentary rock. The specimens were Linyi sandstone from China and Concrete (rock-like material, conglomerate). Using the small scaled LCM system, we estimated the cutter force and specific energy under different cutting conditions. The cutter forces (cutting and normal) increased with penetration depth and cutter spacing in two rock types, and it was affected by the strength of specimens. On the other hand, the ratio of the peak cutter force to the mean cutter force was influenced by cutting characteristic and composition of rock rather than rock strength. The cutting coefficient was affected by the friction characteristic between rock and pick cutter rather than the cutting conditions. Therefore, the optimal cutting angle can be determined by considering of cutting coefficient and resultant force of pick cutter. The optimum cutting condition was determined from the relationship between the specific energy and cutting condition. For two specimens, the optimum s/p ratio was found to be two to four, and the specific energy decreased with the penetration depth. The result from this study can be used as background database to understand the cutting mechanism of a pick cutter, also it can be used to design for the mechanical excavator.

Assessment of Cutting Performance of a TBM Disc Cutter for Anisotropic Rock by Linear Cutting Test (선형절삭시험에 의한 이방성 암석에 대한 TBM 디스크커터 절삭 성능 평가 연구)

  • Jeong, Ho-Young;Jeon, Seok-Won;Cho, Jung-Woo;Chang, Soo-Ho;Bae, Gyu-Jin
    • Tunnel and Underground Space
    • /
    • 제21권6호
    • /
    • pp.508-517
    • /
    • 2011
  • The linear cutting test is the most reliable and accurate approach to measuring cutting forces and cutting efficiency using full-size disc cutter in various rock types. The result of linear cutting tests can be used to obtain the key parameters of cutter-head design (i.e. optimum cutter spacing, cutter forces). In Korea, LCM (Linear Cutting Machine) tests have been performed for typical Korean rock types, but these studies focused on the isotropic rocktypes. For prediction of TBM (Tunnel Boring Machine) performances in complex geological conditions including a bedded and schistose rockmass, it is important to consider the effects of anisotropy of rockmass on cutting performances and cutting efficiency. This study discusses a series of LCM tests that were performed for Asan Gneiss having two types of anisotropy angles to assess the effect of the anisotropy angle on rock-cutting performances of TBM. The result shows that the rock-cutting performances and optimum cutting conditions are affected by anisotropy angle and the effect of anisotropy on rock strength should be considered in a prediction of the cutting performances and efficiency of TBM.

Development of the Altari Radish Pre-processing System for Kimchi Production(II) - Optimum Cutter Shape for Plane Peeling - (김치생산용 알타리무 전처리가공시스템 개발(II) - 평면형 삭피칼날의 최적형상 -)

  • Min Y. B.;Kim S. T.;Kang D. H.
    • Journal of Biosystems Engineering
    • /
    • 제30권3호
    • /
    • pp.161-165
    • /
    • 2005
  • In this study, peeling test of the Altari radish on kimchi pre-processing system for mechanization was performed with the longitudinal plane peeling type with wider cutting blade than that of the peeled chip's. To determine the optimum cutter shape to match this plane peeling type, the peeling tests depending on variable cutting speed, rake angle and blade angle using the blade with thickness as 2 m and width as 50mm were performed, and the patterns of the peeled chips and peeling resistances were investigated. As the result of the tests, the rake angle of the blade with clean peeled surface of the Altari radish was over $45^{\circ}$, and the blade angle and rake angle with the minimum peeling resistance was $20^{\circ}\;and\;60^{\circ}$, respectively. The optimum peeling conditions were; the peeling speed 0.2m/s, blade angle $20^{\circ}$ and the rake angle $60^{\circ}$, and the peeling resistance of each blade was 15 N.

Development of An Onion Peeler (I) - Root cutting equiment - (양파 박피기 개발(I))

  • 민영봉;김성태;정태상;최선웅;김정호
    • Journal of Biosystems Engineering
    • /
    • 제27권4호
    • /
    • pp.301-310
    • /
    • 2002
  • With a purpose to manufacture an onion peeler, the root cutting equipment of the onion could be attached to a prototype onion peeler was developed. Before the experiment, the distribution of the dimensions of the Korean native onion were measured. And some types of the blades to cut and remove the root of the onion were designed and such characteristics as feasible revolution, conveying speed, and power requirement were investigated. From the result of the test, the selected one among the various cutters was the wing type blade with the round blade to cut out the root and with the vertical blade to cut a circular line. The optimum operating conditions of the wing type blade were revealed the revolution with no load was at 630 rpm, and the conveying speed was 0.08 m/s. Under these conditions, the maximum torque was 5.25 kg·m and the power requirement was 33 W, respectively.

Evaluation of Machining Characteristics for Difficulty-to-cut Material (Heat-Resistant Alloy) (난삭제(내열합금강)의 가공특성평가)

  • 김석원;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.135-138
    • /
    • 1995
  • Recently, most of advanced materials used a wide industry field commonly have the characteristics of difficulty-to-cut materials. The cutting of difficulty-ro-cut materials have a variable optimum cutting conditions and methods according to materials. Above all,it is important of understanding to machinability of each materials. Especially, superalloy with Elevated Temperature Strength like as Incone1718 was used in nuclear power equipment and jet engine parts. This research shows a machining characteristics of Heat-Resistant alloy for high efficiency cutting through cutting force,tool wear and cutting temperature in SUS304 and Incone1718.

  • PDF

A Study on Ultra-precision Fly-cutting of Aluminum Alloy (알루미늄 합금의 초정밀 플라이커팅에 관한 연구)

  • Park Soon-Sub;Lee Ki-Yong;Kim Hyoung-Mo;Hwang Yeon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.233-234
    • /
    • 2006
  • For the machining of freeform surface, fly cutting is one of the key technology to meet profile accuracy and surface roughness simultaneously. Fly cutting can be applied to manufacturing of optical components with complex profile. In this study aluminum alloy was machined in the process of ultra precision fly cutting and investigated optimum machining conditions in terms of feed-rate, pitch per cycle and depth of cut.

  • PDF

Optimization of Cutting Parameters for Burr Minimization (버의 최소화를 위한 밀링 가공 파라미터의 최적화)

  • Lee, Sang-Heon;Lee, Seong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제18권12호
    • /
    • pp.130-136
    • /
    • 2001
  • Burrs formed during face milling operations are very hard to characterize because there are many parameters that affect the cutting process. Many researchers have tried to predict burr characteristics including burr size and shapes with various experimental conditions such as cutting speed, feed rate, in-plane exit angle, number of inserts, etc., but it still remains as a challenging problem for the complex combined effects between the parameters. In this paper, the Taguchi method, which is a systematic optimization application in design and analysis of experiments, is introduced to acquire optimum cutting parameters for burr minimization in face milling. Also, analysis of variance (AVOVA) is employed to study the performance characteristics in more detail. Experimental verifications are provided to show the effectiveness of this approach.

  • PDF

A Study on the Machinability Evaluation According to Lubrication Conditions and Taper Angle for Turning of SCM440 (SCM440 의 선삭에서 윤활조건과 테이퍼 각에 따른 가공성 평가에 관한 연구)

  • Choi, Min-Seok;Kim, Dong-Hyeon;Hwang, Seong-Ju;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제31권1호
    • /
    • pp.35-42
    • /
    • 2014
  • Recently, in industry field, many researchers are looking for ways to reduce the use of lubricant because of environmental and economical reasons. MQL lubrication is one of many lubrication technologies. The aim of this study is to evaluate the machinability considering lubrication methods and taper angles of workpieces for turning of SCM440. Workpieces of two shapes such as workpiece with and without taper angle are used. And two lubrication methods such as MQL and Wet have been considered. And cutting force and surface roughness are used as characteristic values. Cutting speed, feed rate, injection angle and distance are used as design parameters. The characteristic values were statistically analyzed by Taguchi method. From the results, main effects plot and importance of each parameter according to conditions are analyzed. Finally, this study has been suggested the optimum machining conditions according to the lubrication methods, machining conditions and shape of workpiece.

A Study on the Cutting and Vibratory Characteristics of the Eccentrically Rotating Cutter-Bar System (편심회전 봉형 절단장치의 절단 및 진동 특성에 관한 연구)

  • 송현갑;정창주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제17권3호
    • /
    • pp.3885-3893
    • /
    • 1975
  • This work was intended to study the cutting graph and vibratory phenomina of a newly developed mower which may be suitable for mowing agricultural product having large and hard stems like corn and sugar beet. The system consists of cutter-bar having Curvilinear-translation motion, which attached to drag-crank mechanism. The motion of equation developed for experimental vibratory system which equipped with the cutter-bar system was established and the parameters defining the system's vibratory motion were experimentally determined. The optimum balancing weight for the cutter-bar am vibratory characteristics of the cutter-bar for various counterweight were analyzed to provide the design and operational conditions. The results of the study are summarized as follows; (1) The cutting graph by the new cutter-bar system depends upon the magnitude of ratio of forward travel(Vm) to crank speed (R$\omega$); The cutting pitch for Vm/R$\omega$ 1 (whole cycle cutting) and Vm/R$\omega$=2/$\pi$ (a half cycle cutting) are 2$\pi$ Vm and 4R, respectively. (2) The experimental vibratory system had been proved to function adequately so that it can be used in determining the required counterweight to minimize the vibratory motion of cutter-bar. (3) Experimentally determined counterweight to give the least vibratory motion was a little greater than the theoretically determined one. With the optimum counterweight it was possible to reduce up to about 87% of the amplitude without counterweight, which may be considered to be within safe operational region. (4) To avoid the actual operation of the cutter-bar at resonance which occured in low frequency ratio, it was considered that the rotational speed of the crank for a specific design of mower should be determined separately in connection with the desired cutting graph.

  • PDF