• 제목/요약/키워드: Optimum classification

검색결과 147건 처리시간 0.02초

THE DECISION OF OPTIMUM BASIS FUNCTION IN IMAGE CLASSIFICATION BASED ON WAVELET TRANSFORM

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.169-172
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have been tried to enhance classification accuracy. Previous studies show that the classification technique based on wavelet transform is more effective than that of traditional techniques based on original pixel values, especially in complicated imagery. Various wavelets can be used in wavelet transform. Wavelets are used as basis functions in representing other functions, like sinusoidal function in Fourier analysis. In these days, some basis functions such as Haar, Daubechies, Coiflets and Symlets are mainly used in 2D image processing. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we computed the wavelet coefficients of satellite image using 10 different basis functions, and then classified test image. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis function. The energy parameter of signal is the sum of the squares of wavelet coefficients. The energy parameter is calculated by sub-bands after the wavelet decomposition and the energy parameter of each sub-band can be a favorable feature of texture. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

  • PDF

Selecting Optimal Basis Function with Energy Parameter in Image Classification Based on Wavelet Coefficients

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • 대한원격탐사학회지
    • /
    • 제24권5호
    • /
    • pp.437-444
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have tried to enhance classification accuracy. Previous studies have shown that the classification technique based on wavelet transform is more effective than traditional techniques based on original pixel values, especially in complicated imagery. Various basis functions such as Haar, daubechies, coiflets and symlets are mainly used in 20 image processing based on wavelet transform. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we first computed the wavelet coefficients of satellite image using ten different basis functions, and then classified images. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis functions. The energy parameters of wavelet detail bands and overall accuracy are clearly correlated. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

Automated Classification of Audio Genre using Sequential Forward Selection Method

  • Lee Jong Hak;Yoon Won lung;Lee Kang Kyu;Park Kyu Sik
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.768-771
    • /
    • 2004
  • In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital signal processing approach. From the 20 second query audio file, 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS (Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we verify the superior performance of the SFS method that provides near $90{\%}$ success rate for the genre classification which means $10{\%}$-$20{\%}$ improvements over the previous methods

  • PDF

위성영상 해상도에 따른 순천만 해안습지의 분류 정확도 변화 (The change of land cover classification accuracies according to spatial resolution in case of Sunchon bay coastal wetland)

  • 구자용;황철수
    • 한국지역지리학회지
    • /
    • 제7권1호
    • /
    • pp.35-50
    • /
    • 2001
  • 공간상의 지리현상은 축척에 따라 공간적 분포패턴이 다르게 표현되고 측정될 수 있다. 특정한 지리현상은 특정한 축척에서 보다 선명하게 관찰될 수 있다. 지표면의 정보를 담고 있는 위성영상 역시 공간해상도의 영향에 의해 독특한 특성을 보이고 있다. 위성영상의 분석을 위한 적정해상도를 모색하기 위해서는 영상으로부터 분류되는 속성의 특성을 파악하여야 한다. 본 연구에서는 순천만 해안습지를 대상으로 위성영상으로부터 토지피복 정보를 추출하고, 공간 해상도의 변화에 따른 변화를 살펴보았다. 순천만 영상을 대상으로 토지피복 분류정확도를 파악한 후 30m 해상도부터 480m 해상도까지 30m 간격의 16가지 해상도로 영상을 제작하여 분류정확도의 변화를 살펴보았다. 순천만 해안습지는 다양한 토지유형이 다양한 크기로 분포하고 있어 해상도의 변화에 따라 토지피복 특성이 변화하고 있으며, 순천만의 위성영상 역시 축척 효과에 의해 해상도에 따라 속성정보의 특성의 변화가 뚜렷하게 나타난다.

  • PDF

경암지반 NATM 터널에서 암반분류 및 계측에 의한 최적지보공 선정에 관한 연구 (Selection of Optimum Support based on Rock Mass Classification and Monitoring Results at NATM Tunnel in Hard Rock)

  • 김영근;장정범;정한중
    • 터널과지하공간
    • /
    • 제6권3호
    • /
    • pp.197-208
    • /
    • 1996
  • Due to the constraints in pre site-investigation for tunnel, it is essential to redesign the support structures suitable for rock mass conditions such as rock strength, ground water and discontinuity conditions for safe tunnel construction. For the selection of optimum support, it is very important to carry out the rock mass classification and in-situ measurement in tunnelling. In this paper, in a mountain tunnel designed by NATM in hard rock, the selectable system for optimum support has been studied. The tunnel is situated at Chun-an in Kyungbu highspeed railway line with 2 lanes over a length of 4, 020 m and a diameter of 15 m. The tunnel was constructed by drill & blasting method and long bench cut method, designed five types of standard support patterns according to rock mass conditions. In this tunnel, face mapping based on image processing of tunnel face and rock mass classification by RMR carried out for the quantitative evaluation of the characteristics of rock mass and compared with rock mass classes in design. Also, in-situ measurement of convergence and crown settlement conducted about 30 m interval, assessed the stability of tunnel from the analysis of monitoring data. Through the results of rock mass classification and in-situ measurement in several sections, the design of supports were modified for the safe and economic tunnelling.

  • PDF

액적 분급 장치를 적용한 분무열분해 공정으로부터 합성된 실리카 분말의 특성 (The Characteristics of Silica Powders Prepared by Spray Pyrolysis Applying Droplet Classification Apparatus)

  • 강윤찬;주서희;구혜영;강희상;박승빈
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.633-638
    • /
    • 2006
  • Silica powders with spherical shape and narrow size distribution were prepared by large-scale ultrasonic spray pyrolysis applying the droplet classification apparatus. On the other hand, silica powders prepared by large-scale ultrasonic spray pyrolysis without droplet classification apparatus had broad size distribution. Droplet classification apparatus used in this paper applied the principles of cyclone and dispersion plate with small holes. The droplets formed from the ultrasonic spray generator applying the droplet classification apparatus had narrow size distribution. The droplets with fine and large sizes were eliminated by droplet classification apparatus. The optimum flow rate of the carrier gas and diameter of the hole of the dispersion plate were studied to reduce the size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis. The size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis at the optimum preparation conditions was 0.76.

Optimum Design of Ship Design System Using Neural Network Method in Initial Design of Hull Plate

  • Kim, Soo-Young;Moon, Byung-Young;Kim, Duk-Eun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1923-1931
    • /
    • 2004
  • Manufacturing of complex surface plates in stern and stem is a major factor in cost of a preliminary ship design by computing process. If these hull plate parts are effectively classified, it helps to compute the processing cost and find the way to cut-down the processing cost. This paper presents a new method to classify surface plates effectively in the preliminary ship design using neural network. A neural-network-based ship hull plate classification program was developed and tested for the automatic classification of ship design. The input variables are regarded as Gaussian curvature distributions on the plate. Various applicable rules of network topology are applied in the ship design. In automation of hull plate classification, two different numbers of input variables are used. By observing the results of the proposed method, the effectiveness of the proposed method is discussed. As a result, high prediction rate was achieved in the ship design. Accordingly, to the initial design stage, the ship hull plate classification program can be used to predict the ship production cost. And the proposed method will contribute to reduce the production cost of ship.

Optimum seismic design of reinforced concrete frame structures

  • Gharehbaghi, Sadjad;Moustafa, Abbas;Salajegheh, Eysa
    • Computers and Concrete
    • /
    • 제17권6호
    • /
    • pp.761-786
    • /
    • 2016
  • This paper proposes an automated procedure for optimum seismic design of reinforced concrete (RC) frame structures. This procedure combines a smart pre-processing using a Tree Classification Method (TCM) and a nonlinear optimization technique. First, the TCM automatically creates sections database and assigns sections to structural members. Subsequently, a real valued model of Particle Swarm Optimization (PSO) algorithm is employed in solving the optimization problem. Numerical examples on design optimization of three low- to high-rise RC frame structures under earthquake loads are presented with and without considering strong column-weak beam (SCWB) constraint. Results demonstrate the effectiveness of the TCMin seismic design optimization of the structures.

신경망을 이용한 최적 패턴인식 및 분류 (The optimum pattern recognition and classification using neural networks)

  • 김진환;서보혁;박성욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.92-94
    • /
    • 2004
  • We become an industry information society which is advanced to the altitude with the today. The information to be loading various goods each other together at a circumstance environment is increasing extremely. The restriction recognizes the data of many Quantity and it follows because the human deals the task to classify. The development of a mathematical formulation for solving a problem like this is often very difficult. But Artificial intelligent systems such as neural networks have been successfully applied to solving complex problems in the area of pattern recognition and classification. So, in this paper a neural network approach is used to recognize and classification problem was broken into two steps. The first step consist of using a neural network to recognize the existence of purpose pattern. The second step consist of a neural network to classify the kind of the first step pattern. The neural network leaning algorithm is to use error back-propagation algorithm and to find the weight and the bias of optimum. Finally two step simulation are presented showing the efficacy of using neural networks for purpose recognition and classification.

  • PDF

CAD 시스템에 의한 선체중앙단면의 최소중량설계에 관한 연구 (Minimum Weight Design of Midship Structure by the CAD System)

  • 박명규;양영태
    • 한국항해학회지
    • /
    • 제13권2호
    • /
    • pp.75-95
    • /
    • 1989
  • The study presents the optimum design of B/C midship structure based on the classification society's Rule. The SUMT (Sequential Unconstrained Minimization Technique), using the Direct Search Methods (Hooke and Jeeves, Simplex) is applied to the solution of this nonlinear optimum design problem with constraints. Through the optimum designs of existing ships(60k, 186k, 220k), the amount 0.45-6.18% in weight of their midship structures are obtained on the viewpoint of minimum weight design.

  • PDF