• 제목/요약/키워드: Optimum Position

Search Result 540, Processing Time 0.026 seconds

Connections of sleeve joint purlin system

  • Tan, S.H.;Seah, L.K.;Li, Y.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • This paper presents the findings of an investigation carried out to determine the most appropriate connections, in terms of rotational stiffness, to use for the optimum design of cold-formed Zed section sleeve joint purlin system. Experiments and parametric studies were conducted to investigate the effects of geometric variables on the behavior of the sleeve-purlin and cleat-purlin connections of the sleeve joint purlin system. The variables considered were purlin size and thickness, sleeve size, thickness, length and bolt position. The test results were used to verify the empirical expressions, developed herein, employed to determine the rotational stiffness of connections. With the predicted connection stiffness, the most suitable sleeve-purlin and cleat-purlin connections can be selected so as to produce an optimum condition for the sleeve joint purlin system.

Optimum Design of Wiper Mechanisms Consisting of Two RSSR Mechanisms (두개의 RSSR 기구로 이루어진 와이퍼기구의 최적설계)

  • 최진호;최동훈;서진원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1573-1580
    • /
    • 1995
  • In this paper, an optimization program for the design of wiper mechanisms is developed to minimize jerky motion while satisfying design constraints on kinematic and torque performances, mobility condition, and packaging. The lengths/orientations of the links and the position of a driving motor are selected as the design variables. In our optimum design program for wiper mechanisms, an optimization module interacts with an analysis module which calculates kinematic and force/torque properties, until convergence. The optimization results of a particular wiper mechanism are presented to illustrate the effectiveness of the program developed.

Optimum Machining Condition of Die Steel In The Oil-mist Condition (오일미스트 조건에서의 금형강의 최적절삭조건)

  • Kim Sang-Min;Kim Joon-Hyun;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • The purposes of using cutting fluid during cutting have been cooling, lubricating, chip washing and anti-corroding. However, the present manufacturing industry restricts the use of cutting fluid because cutting fluid contains poisonous substances which are harmful to the human body. Therefore environmentally conscious machining and technology have more important position in machining process because cutting fluids have significant influence on the environment in milling process. In this study, environmentally conscious machining can be obtained by the way of selecting the optimum machinig conditon using the design of experiment. Cutting using oil-mist showed better cutting characteristics than dry, air and fluid cutting with respect to by cutting force, tool wear and surface roughness. Also, the optimum machining condition for cutting using oil-mist could be selected through Taguchi method.

A Study on the Structural Modification of the Open Box Type Structure by Using the Stiffener (보강재를 이용한 열린 상자형 구조물의 구조변경법에 관한 연구)

  • 박석주;최창우;오창근;왕지석;정재현
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.57-64
    • /
    • 1996
  • The objectiv of this paper is to offer the method of the optimum structural modification by fixing the stiffener on the structure. The vibrational characteristics of a open box type structure are analyzed by the sub-structure synthesis method and sensitivies of each sub-structure are calculated by sensitivity analysis method. The positions to modify are found and the quantities to change are obtained by optimization techniques. As the result, it was found that; (1) The sensitivites of the natural frequency could easily be calculated by the sensitivity analysis method and the optimum position to fix stiffeners could be found. (2) The exact size of stiffeners could be calculated by the optimum structural modification method and the natural frequency could be easily shifted to the objective value. (3) It could be confirmed that the stiffener is a effective tool for accomplishing structural modification.

  • PDF

A study on the Optimum Conditions of Nd:YAG LBW for Zircaloy-4 End Cap Closure By Optical Fiber Transmission (광섬유전송에 의한 Zircaloy-4 봉단마개밀봉의 Nd:YAG LBW의 최적조건에 관한 연구)

  • 김수성;김웅기;이영호
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.85-95
    • /
    • 1997
  • This study is to investigate the optimum conditions of Nd:YAG laser beam welding for Zircaloy-4 end cap closure by optical fiber transmission. Laser welding parameters which affect the penetration depth and bead width were experimentally examined using the various beam radius by the beam quality analyzer, joint geometries of end cap and the laser parameters which mean pulse width, repetition rate and pulse energy. Also, an optimum welding speed and the effect of assistant gas with varying the flow rate of He were investigated. We found that the laser average power for the end cap welding will be 230W and rotation speed must not exceed 8 RPM, the best position of focus using optical fiber with 600.mu.m will be 2 to 3mm below the surface of the material.

  • PDF

Optimum Design of a Geometrically Asymmetric Trapezoidal Fin Based on the Fixed Fin Base Height (고정된 핀 바닥 높이에 기준한 기하학적 비대칭 사다리꼴 핀의 최적 설계)

  • Kang, Hyung-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.81-87
    • /
    • 2008
  • A geometrically asymmetric trapezoidal fin with variable fin base thickness and height is optimized based on the fixed fin base height using a one-dimensional analytic method. The temperature profile along the normalized X position in the fin is presented. For the fixed fin base height, the optimum heat loss, fin length and efficiency as a function of inside fluid convection characteristic number, fin base thickness and height, fin shape factor, convection characteristic numbers ratio and ambient convection characteristic number are represented. One of the results shows that the effect of fin base height and ambient convection characteristic number on the optimum values is remarkable.

A Study on the Optimum Line Heating Condition for Straightening a Thin Plate Welded Structure (박판재 용접 구조물의 선상 가열 교정에서 최적 조건의 선정에 관한 연구)

  • Park, Jun-Hyoung;Kim, Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.40-45
    • /
    • 2011
  • The purpose of this study is to establish the optimum line heating condition to straighten the excessive bending distortion of a thin plate welded structure. For it, the extensive FEA and experiments were performed to evaluate the effect of heat source, heating speed and position on the straightening of a thin plate welded structure. In accordance with the results obtained by FEA and experiments, the straightening effect of line heating was strongly depends on the variables used in this study. With the results, the optimum line heating condition was established by using the response surface method and verified through comparing it with the numerical analysis result.

On the Performance of the Anti-Rolling Tank(1) (감요수조(減搖水槽)의 성능(性能)에 관(關)하여(1))

  • Bong-Koo,Woo;Jong-Do,Koo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.2
    • /
    • pp.35-44
    • /
    • 1971
  • In terms of this paper, concerning primarily with the U-tube tank stabilizer, the authors' aim is to clarify and consolidate the theory as it has been developed thus far, and to provide with the certain additions which will make it more complete, more accurate, and more practical. And then we can know that the effect of the vertical tank position from the C.G., $a_{st}=1-w^2/{w^2}_{st}$, is very important, on account for the fact that the position factor, $a_{st}$, increase when the anti-rolling tank attaches to higher position vertically, but $a_{st}$ does not increase in proportion to the distance of the tank position. Measuring many characteristic coefficients by experiment, in the equation of the ship-tank system motion, such as the inertia coefficient, the damping coefficient, the natural frequency and so on, they can also give a guess that the higher position will accompany the non-linear motion of the tank water, but the non-linear effect will decrease the tank ability. In this study, they deal with not only the optimum damping coefficient of tank, which has very simply been expressed by the strength ratio, $\lambda$, but also the effect of the tank top, which has experimentally been treated when the water has hit the tank top. As this result, we can immediately find that the ability of the anti-rolling tank decrease at w/ws=0.9 generally low frequency.

  • PDF

A Study on Commercial Power of Traditional Market

  • Baik, Key-Young;Youn, Myoung-Kil
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.4 no.2
    • /
    • pp.1-11
    • /
    • 2016
  • This study investigated commercial power theory of traditional market through the analysis of literature review. Consumers' store selection models are made up a theory based on normative hypothesis, theory of mutual reaction, utility function estimation model, and cognitive-behavioral model. Detailed models are as follows. Normative hypothesis based theory is divided into Reilly's retail gratification theory and Converse's revised retail g ratification theory. Interaction theory is composed of Huff's probability gratification theory, MCI model and Multi-nominal Logit Model (MNL model). There are four models in retail organization position theory such as central place theories, single store position theory, multi store position - assign model, and retail growth potential model. In case of single store position theory, theoretical and empirical techniques have developed for a decision to optimum single store position. Those are like these, a check list, the most simple and systematic method, analogy, and microanalysis technique. Aforementioned models are theoretical and mathematical commercial power measurement and/or model. The study has rather limitations because the variation factors included in formula are only a part of actual commercial power. Therefore, further study shall be made continuously to commercial power areas and variables.

Optimum Positioning of Rests Considering Compliance of Grinding Machine, Workpiece and Rests in Cylindrical Traverse Grinding (가로원통연삭시 연삭기와 공작물 및 방진구의 컴플라이언스를 고려한 방진구의 최적위치 선정)

  • 서장렬;이선규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.173-180
    • /
    • 2000
  • In the process of grinding a long slender type workpiece, such as ballscrew, by the external cylindrical grinding machine, the cylindricity of the workpiece depends on the distance of rests, the stiffness of supports, the diameter and material of workpiece. Conventionally the process needs to be supported by one or more rests to prevent static deflection and vibration. In this paper, the optimal position of the rests was investigated in order to minimize the cylindricity due to the static deflection, by taking compliance of the workpiece and structure into account. In order to obtain the optimal position of rests, a new modeling that is considering the spring effect of all support elements was established. Since it is so complicated to obtain the optimal position analytically for various conditions due to discontinuity, a genetic algorithm u as utilized.

  • PDF