• 제목/요약/키워드: Optimum Laser Power

검색결과 92건 처리시간 0.022초

자동차 부품의 원격 레이저 용접기술 (Remote Welding of Automobile Components using CO2 Laser and Scanner)

  • 서정;이문용;정병훈;송문종;강희신;김정오
    • Journal of Welding and Joining
    • /
    • 제26권5호
    • /
    • pp.74-78
    • /
    • 2008
  • The laser welding of the car body and components has been spread in the automotive industry. The Nd:YAG laser welding system could be used in 3D welding with robot. However, this system cannot efficiently reduce the welding cycle time according to various welding sequences because the robot's moving time is same that of the resistant spot welding system. But the remote welding system with high power $CO_2$ laser and scanner makes it possible welding cycle time much faster than the robot laser welding system. In the $CO_2$ laser remote welding system, laser beam can be rapidly transferred to a workpiece by moving mirrors of scanner system. So, it makes reducing the cycle time of welding process and shaping various welding patterns easily. Therefore, in this paper, the characteristic of weld strength according to patterns of weld bead on $CO_2$ laser welding was investigated. Also, the relationship between shape of weld bead and value of tensile load was studied. Finally, the optimum remote welding condition for car bumper was investigated.

전자 전단 간섭법과 유한요소법을 이용한 압력용기의 내부결함 측정에 관한 연구 (A Study on Measurement of Internal Defects of Pressure Vessel by Digital Shearography and Finite Element Method)

  • 강영준;강형수;채희창
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.29-37
    • /
    • 2001
  • The application of laser in pipelines was started from the base of using laser in nuclear facilities industries and power plants. Because laser can be delivered to a remote area without any difficulties, the application of laser in many industries can solve many difficulties from limitation of access in danger area and reduced the risks of workers. Therefore, we developed a new experimental technique to measure internal defects of pressure vessels with a combination of shearog-raphy and image processing technique. Conventional NDT methods have been taken relatively much time, money and manpower because of performing as the method of contact with objects to be inspected. But digital shearography is laser-based optical method which allows full-field observation of surface displacement derivatives. This method has many advantages in practical use, such as low sensitivity to environmental noise, simple optical configuration and real time mea-surement. In this paper, we find the optimum shearing magnitude with EFM and experiment and measured internal crack length of the pressure vessels at a real time and estimated the error of the results.

  • PDF

반도체 레이저 단면의 실시간 무반사 및 고반사 코팅 (Real-time controlled deposition of anti-reflection and high-reflection coatings for semiconductor laser)

  • 김효상;박흥진;황보창권;김부균;김형문;주흥로
    • 한국광학회지
    • /
    • 제8권5호
    • /
    • pp.395-402
    • /
    • 1997
  • $\1.55mu\textrm{m}$ InGaAsP MQW FP 반도체 레이저 단면의 무반사 코팅 두께를 앞면에 무반사 코팅하는 동안 뒷면의 출력을 실시간으로 측정하여 결정하였다. 굴절률 1.85인 $SiO_x$ 박막의 최적 두께는 188 nm이고, 무반사 코팅 전, 후의 문턱전류비로 계산한 단면의 반사율은 약 2 $\times$ $10^{-4}$이었다. 무반사 코팅 후 주입전류 60 mA일 때 출력이 87%, 기울기 효율이 3.4배, 문턱전류가 2.64배 증가하였다. 또한 실시간으로 $Si/SiO_2$ 박막의 고반사 코팅을 뒷면에 한 후 코팅 전보다 출력이 약 160% 향상되었고, 기울기 효율이 3.8배 증가하였으며, 문턱전류는 1.07배로 코팅 전과 거의 비슷하여, 무반사 및 고반사 코팅 후 반도체 레이저의 출력특성이 크게 향상되었다.

  • PDF

단일 타원 펄스형 Nd:YAG 레이저의 $TEM_{00}$ 모드화 (A study on the $TEM_{00}$ mode of the pulsed Nd:YAG laser with a single elliptical cavity)

  • 이동훈;문진규;곽병구;김희제;조정수;박정후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1759-1761
    • /
    • 1996
  • Md:YAG laser has been used in many applications such as micromachining, nonlinear optical experiments, holography, and rangefinding. These applications quite often require operation of the laser at the $TEM_{00}$ mode since this mode produces the smallest beam divergence, the highest power density, and, hence, the highest brightness. In this study, a pinhole is put between a rod and a half mirror to make the $TEM_{00}$ mode, and then we measured the intensity distribution of the output beam as reducing the diameter of the pinhole from 6mm to 1.5mm. As a result, the optimum size of the pinhole fixed in a resonator to make the $TEM_{00}$ mode was obtained, and we found out that the output beam of the pulsed Nd:YAG laser with a single elliptical cavity has a Gaussian distribution.

  • PDF

AZ61 필러 와이어를 첨가한 AZ31B-H24 마그네슘 합금의 레이저 용접 (Laser Welding of AZ31B-H24 Mg Alloy with AZ61 Filler Wire)

  • 류충선;방국수;이목영;장웅성
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.54-58
    • /
    • 2008
  • Laser welding with AZ61 filler wire was carried out to improve formability though reduction of porosity and formation of under fill bead. Optimum welding condition and mechanical properties of butt joint for $400{\times}500{\times}1.3mm$ magnesium sheets were studied. Optimal welding conditions of laser power, welding speed, and defocusing length are 1000W, 3m/min, and 2mm, respectively. Results of tensile test indicated that both tensile strength and elongation of specimens welded with filler wire were improved at room temperature because of reduction of porosity and under-filled bead formation in addition to the precipitation hardening and microstructure refinement by Al-Mn and Mg-Al-Zn precipitates. At elevated temperature of $200{\sim}350^{\circ}C$, fracture location of tensile specimen was shifted from weld metal to base metal, indicating less softening of weld metal than base metal.

신경망을 이용한 광조형 작업변수 결정 (Determination of Process Parameters in Stereolithography using Neural Network)

  • 이은덕;심재형;백인환
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.147-155
    • /
    • 2002
  • In the stereolithography process, the accuracy of product depends on laser power, scan speed, scan width, scan pattern, layer thickness, resin characteristics and so on. Therefore, appropriate process parameters are required for an accurate prototype. This paper presents a method to determine the key process parameters, i.e., laser scan speed, hatching space, and layer thickness based on scan length, scan area, and layer slope. In order to determine these parameters, three neural networks are employed to represent operator’s experience and knowledge. Optimum values on scan speed, hatching space and layer thickness are recommended to improve the surface roughness and build time on the developed SLA machine.

Numerical Model Simulation of DF-CO$_2$ Transfer Chemical Laser

  • Kim, Sung-Ho;Cho, Ung-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권3호
    • /
    • pp.282-288
    • /
    • 1989
  • Theoretical analysis of DF-$CO_2$ transfer chemical laser is performed through simple kinetic model consisting of 30 chemical reactions. In this model, we calculate the power theoretically by solving the rate equations, which are related to the $D_2\;+\;F_2$ chain reaction and the DF-$CO_2$ resonance energy transfer, combined with both the gain processes and the stimulated emission processes. The calculated powers are verified with previously reported results in good agreements. The output energy rises linearly with the increase in pressure, and the duration time of output pulse show the inverse dependence on pressure. Through the detailed calculation of temperature and concentrations of reactants as a function of time, it is found that the deactivation processes of DF(v) can be neglected in low pressure, but they have to be considered in high pressure. From the parametric study for the variation on [$D_2]/[F_2$] and [$CO_2]/[D_2\;+\;F_2$] at several constant total pressure, the optimum lasing conditions are found to be in a range of 1/3 to 1 and 2 to 4, respectively.

V2O5 및 TeO2 함유 유리를 이용한 염료감응형 태양전지 패널의 레이저 봉착 (Laser Sealing of Dye-Sensitized Solar Cell Panels Using V2O5 and TeO2 Contained Glass)

  • 조성진;이경호
    • 한국세라믹학회지
    • /
    • 제51권3호
    • /
    • pp.170-176
    • /
    • 2014
  • Effective glass frit compositions enabled to absorb laser energy, and to seal a commercial dye-sensitized solar-cell-panel substrate were developed by using $V_2O_5$-based glasses with various amounts of $TeO_2$ substitution. The latter was intended to increase the lifetime of the solar cells. Substitution of $V_2O_5$ by $TeO_2$ provided a strong network structure for the glasses via the formation of tetrahedral pyramids in the glass, and changed the various glass properties, such as glass transition temperature ($T_g$), dilatometric softening point ($T_d$), crystallization temperature, coefficient of thermal expansion (CTE), and glass flowage without any detrimental effect on the laser absorption property of the glasses. The thermal expansion mismatch (${\Delta}{\alpha}$) between the glass frit and the substrate could be controlled within less than ${\pm}5%$ by addition of 10 wt% of ${\beta}$-eucryptite. An 810 nm diode laser was used for the sealing test. The laser sealing test revealed that the VZBT20 glass frit with 10 wt% ${\beta}$-eucryptite was successfully sealed the substrates without interfacial cracks and pores. The optimum sealing conditions were provided by a beam size of 3 mm, laser power of 40 watt, scan speed of 300 mm/s, and 200 irradiation cycles.

Additional Study on the Laser Sealing of Dye-Sensitized Solar-Cell-Panels Using V2O5 and TeO2 Containing Glass

  • Cho, Sung-Jin;Lee, Kyoungho
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.103-107
    • /
    • 2015
  • The effective glass frit composition used to absorb laser energy and to seal commercial dye-sensitized solar cell panel substrates has been previously developed using $V_2O_5-TeO_2$-based glass with 10 wt% ${\beta}$-eucryptite as a CTE controlling filler. The optimum sealing conditions are provided using a 3 mm beam, a laser power of 40 watt, a scan speed of 300 mm/s, and 200 irradiation cycles. In this study, the feasibility of the developed glass frit is investigated in terms of the sealing strength and chemical durability against the commercial iodide/triiodide electrolyte solution and fluorine-doped tin oxide (FTO) electrode in order to increase the solar cell lifetime. The sealing strength of the laser-sealed $V_2O_5-TeO_2$-based glass frit is $20.5{\pm}1.7MPa$, which is higher than those of thermally sealed glass frit and other reported glass frit. Furthermore, the developed glass frit is chemically stable against electrolyte solutions. The glass frit constituents are not leached out from the glass after soaking in the electrolyte solution for up to three months. During the laser sealing, the glass frit does not react with the FTO electrode; thus, the resistivity of the FTO electrode beneath the laser-sealed area remains the same.

DED 방식을 적용한 플래너 밀러의 손상된 스핀들 키 보수 작업에 관한 연구 (A Study on the Repair Work for Spindle Key with Damaged Part in Planner Miller by Directed Energy Deposition)

  • 이재호;송진영;진철규;김채환
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.699-706
    • /
    • 2022
  • In this study, Directed energy deposition (DED) among additive manufacturing is applied to repair damaged spindle key parts of planner miller. The material of the spindle key is SCM415, and the P21 Powder is used. In order to find the optimal deposition conditions for DED equipment, a single-line deposition experiment is conducted to analysis five parameters. The laser power affects the width, and the height is a parameter affected by coaxial gas and powder gas. In addition, laser power, powder feed rate, coaxial gas, and powder gas are parameters that affect dilution. Otimal deposition is that 400 W of laser power, 4.0 g/min of powder feed rate, 6.5 L/min of coaxial gas, 3.0 L/min of powder gas and 4.5 L/min of shield gas. By setting the optimum conditions, a uniform deposition cross section in the form of an ellipse can be obtained. Damage recovery process of spindle key consists of 3D shape design of the base and deposition parts, deposition path creation and deposition process, and post-processing. The hardness of deposited area with P21 powder on the SCM415 spindle key is 336 HV for the surface of the deposition, 260 HV for the boundary area, and 165 HV for the base material.