• 제목/요약/키워드: Optimum FRP

Search Result 45, Processing Time 0.028 seconds

A Study for the Minimum Weight Design of a Coastal Fishing Boat (소형 연안 어선의 최소 중량 설계에 관한 연구)

  • Song, Ha-Cheol;Kim, Yong-Sub;Shim, Chun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.32 no.3
    • /
    • pp.223-228
    • /
    • 2008
  • As most of small fishing boats made of FRP have been constructed by experience in Korea, some structural safety problems have been occurred occasionally. To improve the structural strength and reduce the costs for construction and operation, optimum design for small fishing boat was carried out in this study. The weight of fishing boat and the main dimensions of structural members are chosen as objective function and design variables, respectively. By the combination of global and local search methods, a hybrid optimization algorithm was developed to escape the local minima and reduce CPU time in analysis procedure, and finite element analysis was performed to determine the constraint parameters at each iteration step in optimization loop. Optimization results were compared with the real existing fishing boat, and the effects of optimum design were examined from points of view; structural strength, material cost, etc.

해양환경하에서의 알루미늄 합금 선박용 재료의 기계적 특성과 전기화학적 특성 평가

  • 김성종;고재용;정석기;김정일
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.161-165
    • /
    • 2005
  • Recently, it is on the increase interest for Al alloy with new material for ship application to substitute for FRP ship. The reason is thatAl alloy ship has beneficial characteristics such as high sea speed, increase of loadage and easy to recycle compared with FRP ship. In this paper, mechanical and electrochemical properties are investigated by slow strain rate test experiment in various applied potential condition. These results will provide as reference data to design ship by deciding optimum protection potential regard to hydrogen embrittlement and stress corrosion cracking. In general, Al and Al alloys are not corroded with forming film which has the corrosion resistance property in neutral solution. However, it was observed that formation and destruction of passive film by $Cl^-$ ion in sea water environment. At comparison of current density after 1200 sec in potentiostatic experiment, the current density in the potential range of -0.68 $\~$-1.5 V is shown low value. The low current density means protection potential range. Elongation in applied potential of 0 V was high. However, the corrosion protection application in this condition is impossible potential because the toughness is low value by decreasing strength by active dissolution reaction at parallel part of specimen. The film composed with $CaCO_3$ and $Mg(OH)_2$ has a corrosion resistance property. However, the uniform electrodeposition coating at below -1.6 V potential is not formed since the time to form the uniform electrodeposition coating is short. Therefore, it is concluded that mechanical property is poor because effect by hydrogen gas generation is larger than that of electrodeposition coating. It is concluded that the optimum protection potential range from comparison of_maxim urn tensile strength, elongation and time to fracture is -1.3$\~$0.7 V (SSCE).

  • PDF

Improvement of Flexural Structural Performance and Applied Section Shape for Sound Proof Wall Structures Using Glass Fiber Reinforced Polymer(GFRP) (GFRP를 활용한 도로 방음벽 구조물의 구조성능 및 단면형상 개선에 관한 연구)

  • Jung, Woo-Young;Choi, Hyun-Kyu
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • This research presents the structural performance and an improving technique for flexural capacity of road safety facilities based on the damage cases by wind pressure. Among road safety facilities, a support frame of soundproofing walls is considered as a prototype structure and its corresponding structural behaviors and section design are performed mainly by analytical and experimental studies. On the basis of analytical results, glass fiber reinforced polymer(GFRP) with an epoxy matrix which is high stiffness-to-weight ratio was used for applied one of strengthening techniques and their results shows that support frame strengthened by GFRP is the most effective compared to other cases proposed in this research for advancing its flexural improvement, Finally, optimum section design was performed analytically to evaluate wind-resistance capacity and its result would be very useful for developing a practical design guideline for Road safety facilities under strong wind.

  • PDF

Investigation on optimum protection potential decision by potentiostatic SSRT in sea water of 5083-H116 for Al ship (선박용 재료인 5083-H116에 대한 해수에서 정전위 저변형율 인장시험에 의한 최적방식 전위 결정)

  • U, Yong-Bin;Son, Jeong-Ho;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.213-213
    • /
    • 2009
  • 선박 건조시에 사용되는 알루미늄 합금은 환경친화적인 재료로 각광을 받고 있으며, FRP 선박의 대체재료로 부각되고 있다. 선박 운항시 해수 환경하에서 선체의 부식을 방지하기 위해 도장 뿐만아니라 희생양극이나, 음극방식 등은 필수불가결한 사항이다. Al-Mg 합금인 5083-H116에 대한 천연 해수 용액에서 저변형율 인장시험을 통한 응력부식균율이나 수소취화의 영향이 없는 최적의 방식 전위를 결정하였다.

  • PDF

Effects of Water Cavitation Peening on Cavitation Characteristics of 5000 Series Al Alloys (5000계열 Al 합금의 캐비테이션 특성에 관한 워터 캐비테이션 피닝의 영향)

  • Kim, Seong-Jong;Hyun, Koang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.481-487
    • /
    • 2012
  • Recently, the construction of the small Al alloy ships is an increasing trend in viewpoint such as the disposal issue of a retired ship, the enhancement of environmental regulation and resources recycling etc. for FRP ships. However, Al alloy ship which can achieve high speed by light weight in marine environment is exposed to a problem on materials damage by cavitation-erosion which is generated by large impact pressure with the collapse of air bubbles due to cavitation. Consequently, in this study, water cavitation peening technology was applied in Al alloy for ship to enhance durability life by preventing cavitation damage. So, the water cavitaton peening application time that presented the excellent cavitation characteristic investigated. The weight-loss of 5456-H116, 5083-H321 and 5052-O Al alloy at the optimum water cavitation peening time were improved to 42.11 %, 50.0 % and 25.7 %, respectively.

Evaluation of the Septic Tank Performance in the Sewage Treatment Area and Suggestion of an Optimum Model (하수처리구역내 단독정화조의 성능평가 및 최적 모형의 제안)

  • Lim, Bong-Su;Jung, Keum-Hee;Wang, Ze-Jie
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.403-409
    • /
    • 2007
  • This study was carried out to recommend the systematic improving practice for the effective operation of septic tank, and the evaluation of its BOD and nutrient removal efficiency depending on process, the survey of characteristics of FRP material, and the suggestion of optimum septic tank model within sewage treatment area. The average BOD concentration and BOD removal efficiency of septic tank which was carried out the cleaning periodically in 63.9 mg/L and 77.8%, shows good quality better than the septic tank which was not carried out the cleaning regularly. Maximum load of tensile, flexural and compressive strength increased in proportion to its thickness, and the contents standard 25% of glass fiber required upgrade over than 30%. Configuration and performance for the optimum of the septic tank suggests that over $0.75m^3$ of the effective total volume, adding to over $0.25m^3$ a man for more than 5 men of the treated person, retention time should be within one day. Improving plans about facility and materials quality of the septic tank have an obligation that protective wall ought to install on the concrete bottom and side faces to prevent crumble or transform from loading of the ground or upper part of the structure on the tank setting. And it is eliminated the uneffective resisting pressure and it keeps off circulate imperfect products by strengthening of the test methods such as stretching strength, pressing strength, glass fiber contents and thickness.

Studies on Cultivation of Flue-cured Tobacco of Vagetables Cultivated in the Fields I. Effect of Fertilizer level and Topping Depth on Yield and Quality in Flue-cured Tobacco (채소재배지의 연초재배에 관한 연구 I. 시비량 및 적심정도가 잎담배의 수량 및 품질에 미치는 영향)

  • 이종두;한종구;한철수;이정덕
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.270-276
    • /
    • 1986
  • This experiment was conducted to find out the optimum fertilization level and topping depth for flue-cured tobacco in the fields which chinese cabbage and red-pepper were cultivated. The fertilization level were 0, 25, 50, 75kg per l0a as tobacco compound fertilizer and the topping depth were topping floral axis, topping under the second leaf frp, axos and the fourth leaf from floral axis. In order to product good quality tobacco leaves in the fields which vegetables were cultivated, the optimum amount of tobacco compound fertilizer was recommended 50-75kg per l0a for the field of the chinese cabbage cultivated. and 75kg per l0a for the field of the red-pepper cultivated. The optimum topping depth was desirable at topping under second leaf from floral axis for good leaf quality in chinese cabbage and red-pepper cultured field.

  • PDF

Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams

  • Gemi, Lokman;Alsdudi, Mohammed;Aksoylu, Ceyhun;Yazman, Sakir;Ozkilic, Yasin Onuralp;Arslan, Musa Hakan
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.735-757
    • /
    • 2022
  • The behavior of shear deficient under-balanced reinforced concrete beams with rectangular cross-sections, which were externally strengthened with CFRP composite along shear spans, was experimentally investigated under vertical load. One of the specimens represents a reference beam without CFRP strengthening and the other specimens have different width/strip spacing ratios (wf/sf). The optimum strip in terms of wf/sf, which will bring the beam behavior to the ideal level in terms of strength and ductility, was determined according to the regulations. When the wf/sf ratio exceeds 0.55, the behavior of the beam shifted from shear failure to bending failure. However, it has been observed that the wf/sf ratio should be increased up to 0.82 in order for the beam to reach sufficient shear reserve value according to the codes. It is also observed that the direction and weight of the CFRP composite are one of the most critical factors and 240 gr/m2 CFRP strips experienced sudden ruptures in the shear span after the cracking of the concrete. It is considered as a deficiency that the empirical shear capacity formulas given for the beams reinforced with CFRP in the regulations do not take into account both direction and weight of CFRP composites.

Development and Applicability Evaluation of High Performance Poly-urea for RC Construction Reinforcement (RC 구조물 보강을 위한 고성능 폴리우레아의 개발 및 적용성 평가)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Choi, Hong-Shick;Heo, Gweon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.169-176
    • /
    • 2010
  • Generally, poly-urea is widely used as waterproof coating material due to its superior adhesiveness, elongation capacity, and permeability resistance. In addition, it can be quickly and easily applied on structure surfaces using spray application. Since it hardens in about 30 seconds after application, its construction efficiency is very high and its usage as a special functional material is also excellent. However, currently, poly-urea is mostly used as waterproof coating material and the researches on its usage as a retrofitting material is lacking at best. Therefore, basic studies on the use of poly-urea as a general structural retrofitting material are needed urgently. The objective of this study is to develop most optimum poly-urea composition for structure retrofitting purpose. Moreover, the structural strengthening capacity of the developed poly-urea is evaluated through flexural capacity experiments on RC beams and RC slabs. From the results of the flexural test of poly-urea strengthened RC beam and slab specimens, the poly-urea and concrete specimen showed monolithic behavior where ductility and ultimate strength of the poly-urea strengthened specimen showed slight increase. However, the doubly reinforced specimens with FRP sheet and poly-urea showed lower capacity than that of the specimen reinforced only with FRP sheet.

Adhesion Characteristic and Porosity Change of Alkali Silicate Impregnant of Concrete (Silicate계 콘크리트 함침제 도포에 따른 부착특성 및 공극변화)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Lim, Young-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.276-282
    • /
    • 2010
  • There are the impregnating layer formation by surface protective materials or impregnants and the adhesion method by polymer, FRP sheet or steel plate in the surface protective method of concrete structure. The surface impregnation method by impregnants improves the durability of concrete structure by modifying the structure of the concrete surface and also have a merit that can be shortly applied in place without the decrease of concrete surface appearance and is easily applied again. This study is interested in manufacturing the concrete surface impregnants including lithium and potassium silicate for the repair of the exposed concrete and the color concrete requiring the advanced function in view of the concrete appearance. The durability and porosity properties was tested for the review of application. The result of this study show that the effective content of silicate ranges 5 to 20% and the separate application of the first impregnant and the second impregnant is effective for the optimum performance. The adhesion in tension is slightly increased but the reinforcement of concrete substrate is slight. So, the concrete impregnant of this study is more desirable for the improvement of durability rather than the reinforcement.