• Title/Summary/Keyword: Optimum Design Condition

Search Result 784, Processing Time 0.024 seconds

Analytical Analysis of Segmented Arc Plasma Torch for Plasma Wind Tunnel Facility (플라즈마 풍동 시설용 분절형 아크 플라즈마 토치의 이론적 설계변수 해석)

  • Seo, Jun-Ho;Choi, Soo-Seok;Choi, Seong-Man;Hong, Bong-Guen
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.85-93
    • /
    • 2011
  • A parametric study is conducted for the design of segmented arc plasma torch with the input power and current of 0.4 MW and 300 A, respectively. For this purpose, we use the analytical relationship between input power, current condition, plasma temperature, inner diameter (R) and length (L) of the torch constrictor based on arc channel model. The results reveal that arc plasma temperatures increase monotonically as ��L increases or R decreases for the ranges of R ${\leq}$ 7.5 mm and L ${\leq}$ 1.25 m. For larger valuse of ��R and L than 7.5 mm and 1.25 m, respectively, however, they show non-linear behavior corresponding to the variations of ��L, which stands for the generation of unstable arc plasma. From this parametric study, optimum ranges of R and L are suggested as 5.5 mm ${\leq}$ R ${\leq}$ 7.5 mm and 0.25 m ${\leq}$ L ${\leq}$ 0.5 m for 0.4 MW class segmented arc plasma torch, under which stable arc plasma can be achieved at the input currents of ~300 A.

Prediction of Optimal Microwave-assisted Extraction Conditions Preserving Valuable Functional Properties of Fluid Cheonggukjang Obtained from Red Ginseng (홍삼 첨가 액상청국장의 기능성에 대한 마이크로웨이브 최적 추출조건 예측)

  • Lee, Bo-Mi;Do, Jeong-Ryong;Kim, Hyun-Ku
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.474-480
    • /
    • 2007
  • Response surface methodology (RSM) was employed to optimize extraction conditions preserving valuable functional properties of fluid Cheonggukjang obtained from red ginseng. Based on a central composite design, the study plan was established using variations in microwave power, ethanol concentration, and extraction time. Regression analysis was applied to obtain a mathematical model. A maximum electron donating ability (EDA) of 99.09% was obtained under the specific extraction conditions of microwave power 135.62 W, ratio of solvent to sample contents. 3.60 g/mL, and an extraction time of 11.79 min. The maximum inhibitory effect on tyrosinase activity was 10.02% at 119.16 W, 4.02 g/mL, and 5.57 min. The maximum superoxide dismutase (SOD)-like activity was 63.83% under the extraction conditions of 125.29 W, 4.04 g/mL, and 11.02 min. Based on superposition of four-dimensional RSM data obtained to optimize electron donating ability, nitrite-scavenging ability, inhibitory effect on tyrosinase activity, and SOD-like activity, the optimum ranges of extraction conditions were found to be a microwave power of $l{\sim}85 W$, a ratio of solvent to sample content of $1.4{\sim}2.8\;g/mL$, and an extraction time of $6.5{\sim}11\;min$.

Optimization of Microwave-Assisted Pretreatment Conditions for Enzyme-free Hydrolysis of Lipid Extracted Microalgae (탈지미세조류의 무효소 당화를 위한 마이크로파 전처리 조건 최적화)

  • Jung, Hyun jin;Min, Bora;Kim, Seung Ki;Jo, Jae min;Kim, Jin Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.229-239
    • /
    • 2018
  • The purpose of this study was to effectively produce the biosugar from cell wall of lipid extracted microalgae (LEA) by using microwave-assisted pretreatment without enzymatic hydrolysis process. Response surface methodology (RSM) was applied to optimization of microwave-assisted pretreatment conditions for the production of biosugar based on enzyme-free process from LEA. Microwave power (198~702 W), extraction time (39~241 sec), and sulfuric acid (0~1.0 mol) were used as independent variables for central composite design (CCD) in order to predict optimum pretreatment conditions. It was noted that the pretreatment variables that affect the production of glucose (C6) and xylose (C5) significantly have been identified as the microwave power and extraction time. Additionally, the increase in microwave power and time had led to an increase in biosugar production. The superimposed contour plot for maximizing dependent variables showed the maximum C6 (hexose) and C5 (pentose) yields of 92.7 and 74.5% were estimated by the predicted model under pretreatment condition of 700 w, 185.7 sec, and 0.48 mol, and the yields of C6 and C5 were confirmed as 94.2 and 71.8% by experimental validation, respectively. This study showed that microwave-assisted pretreatment under low temperature below $100^{\circ}C$ with short pretreatment time was verified to be an effective enzyme free pretreatment process for the production of biosugar from LEA compared to conventional pretreatment methods.

The Physical Property of the Structural Color Yarn and Fabric for Emotional Garment Using Biomimetic Technology (생체모방기술을 응용한 감성의류용 구조발색사와 직물의 물성)

  • Kim, Hyun-Ah;Kim, Seung-Jin
    • Science of Emotion and Sensibility
    • /
    • v.15 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • This study investigated the structural coloration and fabric hand of the caustic reduced fabrics for emotional garment using structural color yarns, which was spun by 37 alternating nylon and polyester layers capable of producing basic colors using biomimetic technology. The colorations of the three kinds of structural color yarns were confirmed using multi angle spectro-photometer, and their triangular cross sections composed with 37 alternating nylon and polyester layers were measured using SEM and were discussed with layer length in relation with coloration and spinning conditions were also set up. The apparent color difference and reflectance of the three kinds of fabrics with different density and weave pattern were analysed as ranging from 400nm to 700nm. The optimum fabric structural design which is made by warp and weft densities(194ends/in ${\times}$ 105picks/in) and caustic reduction condition by $100^{\circ}C$ temperature and 60minutes with NaOH, 20g/l solution were decided through analysis of the mechanical properties and fabric hands of these three kinds of fabrics treated with 3 kinds of the caustic reduction conditions. And it was shown that the rate of caustic reduction was increased from 13% to 23% with increasing temperature and time of caustic reduction. The extensibility, bending rigidity and shear modulus of caustic reduction treated fabrics were decreased by treatment of caustic reduction, on the other hand fabric compressibility was increased. And it was shown that the hand value of specimen number one which was treated with temperature $100^{\circ}C$ and time 60minute was the best and the hand of this fabric was better than that of Morpho $fabric^{(R)}$ made by Teijin co. Japan.

  • PDF

Numerical Analysis for the Optimum Design of Shroud Tidal Stream Generation System (쉬라우드 조류 발전 시스템 상부 두께 변화에 따른 유속 변화에 관한 연구)

  • Lee, Uk Jae;Lee, Sang Ho;Han, Seok Jong;Jeong, Shin Taek;Choi, Hyuk Jin;Ko, Dong Hui
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.134-141
    • /
    • 2018
  • Numerical simulations were carried out to investigate the flow velocity changes in the flow field due to the variation in the thickness of the upper part of the shroud tidal power generation system. In this study, it was performed under constant flow velocity condition. In addition, performance analysis of shroud was performed under the same conditions. As the height of the upper part increases, the flow velocity rate gradually increases, and it tends to decrease at a certain height. As a result of analyzing the shape of the blade and the shape of the blade combined with the shroud, the torque of the blade increased due to the increase of the flow rate by the shroud system. It is expected that the shape of the structure obtained by this study and the analysis of the flow velocity distribution in the flow field can provide the data necessary for the development of an efficient shroud tidal power generation system.

Analysis of the Behavior Characteristics of Pile Foundations Responding to Ground Deformation (지반 변형 대응형 말뚝 기초의 거동 특성 분석)

  • Lee, Junwon;Shin, Sehee;Lee, Haklin;Kim, Dongwook;Lee, Kicheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.21-32
    • /
    • 2020
  • As the global large-scale infrastructure construction market expands, the construction of civil engineering structures in extreme environments such as cold or hot regions is being planned or constructed. Accordingly, the construction of the pile foundation is essential to secure the bearing capacity of the upper structure, but there is a concern about loss of stability and function of the pile foundation due to the possibility of ground deformation in extreme cold and hot regions. Therefore, in this study, a new type of pile foundation is developed to respond with the deformation of the ground, and the ground deformation that can occur in extreme cold and hot region is largely divided into heaving and settlement. The new type of pile foundation is a form in which a cylinder capable of shrinkage and expansion is inserted inside the steel pipe pile, and the effect of the cylinder during the heaving and settlement process was analyzed numerically. As a result of the numerical analysis, the ground heaving caused excessive tensile stress of the pile, and the expansion condition of the cylinder shared the tensile stress acting on the pile and reduced the axial stress acting on the pile. Ground settlement increased the compressive stress of the pile due to the occurrence of negative skin friction. The cylinder must be positioned below the neutral point and behave in shrinkage for optimum efficiency. However, the amount and location of shrinkage and expansion of cylinder must comply with the allowable displacement range of the upper structure. It is judged that the design needs to be considered.

Preparation of Cosmeceuticals Containing Wheat Sprout Extracts: Optimization of Emulsion Stability Using CCD-RSM (밀싹 추출물이 함유된 Cosmeceuticals의 제조: CCD-RSM을 이용한 유화안정성 최적화)

  • Jang, Hyun Sik;Ma, Xixiang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.320-325
    • /
    • 2021
  • In this study, an optimization for the production of water emulsion was designed by adding an extract of wheat sprout, which is known to contain a large amount of antioxidants. The central composite design of reaction surface analysis method (CCD-RSM) was used for the optimization process. The amount of emulsifier, emulsification time, and added amount of wheat sprout extract were selected as independent variables based on our preliminary experiments. The mean droplet size (MDS), viscosity, and emulsion stability index (ESI) were set as the responses to evaluate the stability of the emulsion. For each independent variable, the P-value and coefficient of determination were evaluated to verify the reliability of the experiments. From the result of CCD-RSM, optimum conditions for the emulsification were determined as 23.6 min, 7.7 wt.%, and 3.9 wt.% for the emulsification time, amount of emulsifier, and amount of sprout, respectively. From the optimized condition obtained, MDS, viscosity, and ESI after 7 days from reaction were estimated as 252.3 nm, 616.7 cP, and 88.7%, respectively. The overall satisfaction was 0.9137, which supported the validity of the experiments, and the error rate was measured at 0.5% or less by advancing the experiments. Therefore, an optimized process for producing an emulsion by adding the malt extract was designed by the CCD-RSM.

Tensile Performance of PE Fiber-Reinforced Highly Ductile Cementitious Composite including Coarse Aggregate (골재의 입도분포 변화에 따른 PE 섬유보강 고연성 시멘트 복합체의 인장성능)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.95-102
    • /
    • 2020
  • For the purpose of developing a PE fiber-reinforced highly ductile cementitious composite having high tensile strain capacity more than 2% under the condition of containing aggregates with large particle size, this study investigated the tensile behavior of composites according to the particle size and distribution of aggregates in the composite. Compared with the mixture containing silica sand of which particle size is less than 0.6 mm, mixtures containing river sand and/or gravel with the maximum particle size of 2.36 mm, 4.75 mm, 5.6 mm, 6.7 mm were considered in the experimental design. The particle size distributions of aggregates were adjusted for the optimized distribution curves obtained from modified A&A model by blending different sizes of aggregates. All the mixtures presented clear strain-hardening behavior in the direct tensile tests. The mixtures with the blended aggregates to meet the optimum curves of aggregate size distributions showed higher tensile strain capacity than the mixture with silica sand. It was also found that the tensile strain capacity was improved as the maximum size of aggregate increased which resulted in wider particle size distribution. The mixtures with the maximum size of 5.6 mm and 6.7 mm presented very high tensile strain capacities of 4.83% and 5.89%, respectively. This study demonstrated that it was possible to use coarse aggregates in manufacturing highly ductile fiber-reinforced cementitous composite by adjusting the particle size distribution.

A study on process optimization of diffusion process for realization of high voltage power devices (고전압 전력반도체 소자 구현을 위한 확산 공정 최적화에 대한 연구)

  • Kim, Bong-Hwan;Kim, Duck-Youl;Lee, Haeng-Ja;Choi, Gyu-Cheol;Chang, Sang-Mok
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.227-231
    • /
    • 2022
  • The demand for high-voltage power devices is rising in various industries, but especially in the transportation industry due to autonomous driving and electric vehicles. IGBT module parts of 3.3 kV or more are used in the power propulsion control device of electric vehicles, and the procurement of these parts for new construction and maintenance is increasing every year. In addition, research to optimize high-voltage IGBT parts is urgently required to overcome their very high technology entry barrier. For the development of high-voltage IGBT devices over 3.3 kV, the resistivity range setting of the wafer and the optimal conditions for major unit processes are important variables. Among the manufacturing processes to secure the optimal junction depth, the optimization of the diffusion process, which is one step of the unit process, was examined. In the diffusion process, the type of gas injected, the injection time, and the injection temperature are the main variables. In this study, the range of wafer resistance (Ω cm) was set for the development of high voltage IGBT devices through unit process simulation. Additionally, the well drive in (WDR) condition optimization of the diffusion process according to temperature was studied. The junction depth was 7.4 to7.5 ㎛ for a ring pattern width of 23.5 to25.87 ㎛, which can be optimized for supporting 3.3 kV high voltage power devices.

Influence of Different Phosphorus Fertilizer to Barley Growth and Yield (맥류에 대한 각종 인산질 비료의 비효검정 시험)

  • Cho, C.H.;Ha, Y.W.;Hong, B.H.;Kim, D.K.;Huh, W.S.;Lee, J.S.;Kang, J.C.;Chai, J.S.;Lee, D.K.;Park, K.Y.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.13
    • /
    • pp.119-126
    • /
    • 1973
  • In order to investigate the effects of phosphorous fertilizer such as fused Phosphate, compound fertilizer and triple phosphate on barley(growth and yield at the fixed level of nitrogen and potassium, 4 level of hosphorous) has been tested at Suwon. Iri. Kwangju ani Daegu with randomized completeblock design. The results obtained could be summarized as follows. 1. In four locations. increased application of phosphorus have brought earlier maturity in barley regardless the type of fertilizer but fused phosphate considered to have more effects on stimulation of maturity of barley compare with the others. 3. Fused phosphate increased yield higher by-8kg/10a application compare with the same level of compound fertilizer and triple phosphate but there was no differences in yield at 12kg/10a phosphate but there was no differences in yield at 12kg/l0a application among the fertilizers except Kwangju and Suwon. 3. Grain weight was considerably higher in application of fused phosphate Thus are considered effects phosphate. 4. Optimum amount of phosphorous fertilizer was considered 8kg/l0a. Application of 4kg per 10a produced lower yield than 8kg and slightly or no increased yield was observed in 12kg application. 5. Among the 4kg/10a applied condition of phosphorous fertilizers, yield was decreased at fused phosphate treatment compare with the others and this fact resulted supposedly due to the lower portion of valid phosphorus in fused phosphate because of its citric acid solubility. At level of 12kg/10a application fused phosphate was considered more effective in yield increment.

  • PDF