• Title/Summary/Keyword: Optimum Contact Area

Search Result 51, Processing Time 0.031 seconds

A Study on the Running Characteristic by Rail cant variation (레일 캔트 변화에 따른 주행특성에 관한 연구)

  • Eom, Beom-Gyu;Kim, Young-Gyu;Lee, Seung-Il;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1142-1147
    • /
    • 2011
  • The rail cant produces a wider bearing area between the wheel and the rail by moving the wheel-rail contact area away from the gauge towards the centre of the railhead, thus improving the wear pattern of the railhead and wheel treads. It is essential to keep the rail cant within the allowable range to ensure optimum track geometry. Neglecting the rail cant geometrical parameters in a track quality evaluation can cause safety of railway vehicle and serviceability problems. In this paper, we examined the effect of the rail cant in general geometry state of the railway track using VI-Rail and analyzed running safety when the railway vehicle passing through curves depending on change of the rail cant and running speed.

  • PDF

A Running Safety Analysis of Railway Vehicle passing through Curve According to Rail Inclination Change (곡선부 통과열차의 레일 경좌 변화에 따른 주행안전성 해석)

  • Son, Myoung-Sun;Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1922-1928
    • /
    • 2011
  • The rail inclination produces a wider bearing area between the wheel and the rail by moving the wheel rail contact area away from the gauge towards the centre of the railhead, thus improving the wear pattern of the railhead and wheel treads. It is essential to keep the rail inclination within the allowable range to ensure optimum track geometry. Neglecting the rail inclination geometrical parameters in a track quality evaluation can cause safety of railway vehicle and serviceability problems. In this paper, we examined the effect of the rail inclination in general geometry state of the railway track using VI-Rail and analyzed running safety when the railway vehicle passing through curves depending on change of the rail inclination and running speed.

  • PDF

Fabrication of superconducting Joints Between PIT Processed BSCCO 2223 Tapes by Single and Multiple Press & reaction Annealing (고온초전도 BSCCO 2223 선재간의 초전도 접합부 제조연구)

  • Yu, Jae-Mu;Go, Jae-Ung;Jeong, Hyeong-Sik
    • 연구논문집
    • /
    • s.27
    • /
    • pp.175-181
    • /
    • 1997
  • Superconducting joints between Bi-2223/Ag tapes are fabricated by a press & reaction anneal and a multiple press & anneal. The silver sheath was mechanically or chemically removed from one side of each tape without altering the superconducting core. The exposed superconducting core of the two tapes were brought into contact and pressed so as to form a lap joint. The joined tapes were then subjected to a series of different thermomechanical treatments to achieve optimum heat treatment condition. The result from transport measurements shows that critical current ($I_c$) transmitting through joined area reaches 9A, approximately 60% of the current capacity of the tapes themselves. The critical current through joined area was improved by repeated press and reaction annealing. Measurements of the current-voltage relationship were made with several configuration of the voltage probes to characterize the critical current variation and I-V curve along the joint. Also discussed are microstructural aspects of the superconducting joint.

  • PDF

Biomechanical Effectiveness and Anthropometric Design Aspects of 3-dimensional Contoured Pillow

  • Kim, Jong Hyun;Won, Byeong Hee;Sim, Woo Sang;Jang, Kyung Seok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.503-517
    • /
    • 2016
  • Objective: The aim of this study was to evaluate the effectiveness of 3 dimensional contoured pillow through analyzing contact pressure and to suggest its design guidelines through analyzing the posture of head and neck area. Background: The quality of sleep is a very important factor closely related with human's health. To improve the quality of sleep, the verification of design factors affecting the posture of the head and neck is needed, and a pillow design that can induce proper posture is required. Method: This study measured the contact pressures of the two reference groups (bead and cotton pillows) as a method to evaluate the design effectiveness of the contoured pillow. This study proposed 3-dimensional design guidelines by drawing anthropometry (head length) affecting cervical curvature angle (CCA) through the measurement of the participants' cervical curvature angles. Results: In the design effectiveness evaluation, the contact pressure of cervical region was higher than that of a reference group (cotton pillow), and contract area increased, and contract pressure decreased in the shape distributing the occipital region's body pressure. This study proposed pillow's cervical supporting height by percentile of a head length [head length (%tile) (cervical supporting height) affecting the posture of the head and neck: 14.6cm (5%tile) (6.2cm), 15.5cm (25%tile) (6.7cm), 16.4cm (50%tile) (7.1cm), and 19.3cm (75%tile) (8.9cm)]. Conclusion: This study confirmed the contoured pillow's design effectiveness maintaining cervical angle comfortable to sleep with the shape supporting the cervical vertebrae and by reducing the contact load of the occipital region. Also, this study proposed pillow design guidelines based on the 3-dimensional contoured pillow design effectiveness, through which the study laid the foundation for pillow design in a systematic method. Application: The results of this study are expected to be utilized as the basis data by which the optimum pillow type and pillow design according to main percentile can be standardized.

A Study on the Characteristics of Wide Band Matching Connector in Round Coaxial Lines (원형 동축 선로에서 광대역 매칭 커넥터의 특성 연구)

  • Kim, Byeong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.152-157
    • /
    • 2012
  • In this paper, smoothing plane connector have been proposed as the vehicle connector for the wireless access in vehicular environments (5.925GHz) communication. This smoothing plane connector is designed by considering the properties of critical parameter like smoothing distance of start to end point of contact area. The design simulation and results can be used to determine the most suitable smoothing plane wire dimensions for vehicle communication connector. The optimized WAVE connector inserted the smoothing plane wire has insertion loss less than-0.17dB at 5.925GHz. It provides 20% of insertion loss with good performance. Therefore, the simulated results can be effectively used for optimum design of high frequency connector for vehicle communication.

Comparison with Properties of Friction and Wear for Cam/Tappet Material (CAM/TAPPET 재료조합에 따른 마찰${\cdot}$마모특성 비교)

  • Song Keun-Chul;Kim Kyung-Woon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.105-111
    • /
    • 2003
  • The valve train system of engines has long been a sensitive area with respect to wear performance because of the high contact loads and surface sliding speeds encountered. In particular, wear problems of load-carrying components in relative motion, such as cam and tappet in valve train system have made troubles. To overcome these problems, combination of proper materials is important, as well as selecting of high wear performance materials. This paper presents the experimental result of friction and wear properties of ca/tappet materials. To investigate friction and wear properties for several combinations of materials, using commonplace tribometer(Plint 77, reciprocating type), we make a selection of a optimum material combination.

  • PDF

Optimum Design of Tire Crown Contour Utilizing Neural Network (신경회로망을 활용한 타이어 크라운형상 최적설계)

  • Cho, Jin-Rae;Shin, Sung-Woo;Jeong, Hyun-Sung;Kim, Nam-Jeon;Kim, Kee-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2142-2149
    • /
    • 2002
  • Contacting with ground in the post-card area size only, tire supports entire automobile weight. As well, it characterizes most of automobile running performance. Among the design parameters, the carcass contour becomes a key design factor. This paper deals with the time-effective optimal design of tire crown contour in order to improve the tire wear performance by employing a back-propagation neural network model.

A Study on Measurement of Internal Defects of Pressure Vessel by Digital Shearography and Finite Element Method (전자 전단 간섭법과 유한요소법을 이용한 압력용기의 내부결함 측정에 관한 연구)

  • 강영준;강형수;채희창
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.29-37
    • /
    • 2001
  • The application of laser in pipelines was started from the base of using laser in nuclear facilities industries and power plants. Because laser can be delivered to a remote area without any difficulties, the application of laser in many industries can solve many difficulties from limitation of access in danger area and reduced the risks of workers. Therefore, we developed a new experimental technique to measure internal defects of pressure vessels with a combination of shearog-raphy and image processing technique. Conventional NDT methods have been taken relatively much time, money and manpower because of performing as the method of contact with objects to be inspected. But digital shearography is laser-based optical method which allows full-field observation of surface displacement derivatives. This method has many advantages in practical use, such as low sensitivity to environmental noise, simple optical configuration and real time mea-surement. In this paper, we find the optimum shearing magnitude with EFM and experiment and measured internal crack length of the pressure vessels at a real time and estimated the error of the results.

  • PDF

Highly Reliable Triboelectric Rotational Energy Scavenger

  • Lee, Younghoon;Lee, Bada;Choi, Dukhyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.397-397
    • /
    • 2016
  • Triboelectric nanogenerators (TENG) can produce power from ambient mechanical sources and have strong points of high output performance, light weight, low cost, and easy manufacturing process. It is expected that TENG can be utilized in the fields of wireless electronics and self-powered devices in the world which pays attention to healthcare and the IoT. In this work, we focus on scavenging ambient rotational energy by using a durably designed TENG. In previous studies regarding harvesting rotation mode energy, the devices were based on sliding mechanism and durability was not considered as a major issue. However friction by rotation causes reliability problems due to wear and tear. Therefore, in this study, we convert rotary motion to linear motion utilizing a cam by which we can then utilize contact-mode TENG and improve device reliability. In order to increase output performance, bumper springs were used below the TENG and the optimum value for the bumper spring constant was analyzed theoretically. Furthermore, the inserting a soft substrate was proposed and its effect on high output was determined to be due to an increase in the contact area. By increasing the number of cam noses, the output frequency was shown to increase linearly. For the purpose of maximum power transfer, the input impedance of the device was determined. Finally, to demonstrate the use of the C-TENG as a direct power source, it was installed on a commercial bicycle wheel and connected to 180 LEDs. In conclusion we present a rotational motion TENG energy scavenger system designed for enhanced durability and optimized output by appropriate choice of spring constants and substrate.

  • PDF

Development and Practical Use of Rubblization Method (원위치파쇄기층화 공법의 개발 및 실용화 연구)

  • Ko, Seok-Beom;Kim, Kyung-Taek;Lee, Young-Chul;Lee, Seung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.405-416
    • /
    • 2005
  • The rubblization technique is breaking the aged concrete pavement slab into rubblized concrete aggregate, and use it as an base material at its original position, then builds overlay above the rubblized base. This method has been successively used in USA due to the advantage of good contructibility, cost-effectiveness as well as the capability of preventing of reflection cracks. However, constructibility and economic performance of rubblization on typical Korean concrete pavements needed to be investigate since to typical Korean concrete pavements have thick slab, as well include lean concrete subbase course. This stud explored optimum breaking depth and suggested minimum 10cm based on reflection crack simulation test. Also proper head shape and impact energy were investigated based on small breaking field tests. It was found that $127kg/cm^2$ of stress with 52.3% of head contact area are breaking requirement. Also, Multi-head type breaker suitable for Korean condition was designed and developed. This multi-head type breaker was designed to rubblize old concrete to the suggested optimum rubblized-depth and rubblized-concrete-aggregate size to prevent reflection crack and maintain high bearing capacity. This machine was used for the test of rubblization of old concrete pavement on a non-use old concrete and a in-serviced road. In these two tests, engineering properties of rubblized base and constructability and cost were investigated. In both tests, the old concrete rubblized to targeted size and depth, and high-level bearing capacity was achieved. Also, superior constructability and lower cost compared with traditional reconstruction was examined.

  • PDF