• Title/Summary/Keyword: Optimizing traffic Signal Timing

Search Result 3, Processing Time 0.02 seconds

A Algorithm on Optimizing Traffic Network by the Control of Traffic Signal Timing (교통신호등 제어를 통한 교통망 최적화 알고리즘)

  • An, Yeong-Pil;Kim, Dong-Choon;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.472-478
    • /
    • 2017
  • In this paper, we deals with optimizing traffic signal timing in grid networks by using a network topology design method. Optimizing traffic signal timing includes minimizing delay time delay between departure and destination by interlocking straight traffic signal in the minimum spanning tree(MST). On the assumption that users of network abide by the paths provided in this paper, this paper shows optimizing traffic signal timing in grid networks. the paths provided in this paper is gathered by using Dijkstra algorithm used in computer networks. The results indicate minimizing delay time of passing through the grid network and interlocking traffic signal in the grid network.

A Study on Optimization of Lane-Use and Traffic Signal Timing at a Signalized Intersection (신호교차로의 차로 배정과 신호시간 최적화 모형에 관한 연구)

  • Kim, Ju Hyun;Shin, Eon Kyo
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.93-103
    • /
    • 2015
  • PURPOSES : The purpose of this study is to present a linear programing optimization model for the design of lane-based lane-uses and signal timings for an isolated intersection. METHODS: For the optimization model, a set of constraints for lane-uses and signal settings are identified to ensure feasibility and safety of traffic flow. Three types of objective functions are introduced for optimizing lane-uses and signal operation, including 1) flow ratio minimization of a dual-ring signal control system, 2) cycle length minimization, and 3) capacity maximization. RESULTS : The three types of model were evaluated in terms of minimizing delay time. From the experimental results, the flow ratio minimization model proved to be more effective in reducing delay time than cycle length minimization and capacity maximization models and provided reasonable cycle lengths located between those of other two models. CONCLUSIONS : It was concluded that the flow ratio minimization objective function is the proper one to implement for lane-uses and signal settings optimization to reduce delay time for signalized intersections.

A Study on Improvement of Run-Time in KS-SIGNAL, Traffic Signal Optimization Model for Coordinated Arterials (간선도로 연동화 신호최적화 모형 KS-SIGNAL의 수행속도 향상을 위한 연구)

  • 박찬호;김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.7-18
    • /
    • 2000
  • KS-SIGNAL, a traffic signal optimization model for coordinated arterials, is an optimization model using the mixed integer linear Programming that minimizes total delay on arterials by optimizing left-turn Phase sequences. However, the Previous version of KS-SIGNAL had a difficulty in reducing computation speed because the related variables and constraints multiply rapidly in accordance with the increase of intersections. This study is designed to propose a new model, improving optimizing computation speed in KS-SIGMAl, and evaluate it. This Paper Puts forth three kinds of methodological approaches as to achieve the above goals. At the first step to reduce run-time in the proposed model objective function and a few constraints are Partially modified, which replaces variable in related to queue clearance time with constant, by using thru-movements at upstream intersection and the length of red time at downstream intersection. The result shows that the run-time can be reduced up to 70% at this step. The second step to load the library in LINDO for Windows, in order to solve mixed integer linear programming. The result suggests that run-time can be reduced obviously up to 99% of the first step result. The third step is to add constraints in related to left-turn Phase sequences. The proposed methodological approach, not optimizing all kinds of left-turn sequences, is more reasonable than that of previous model , only in the view of reducing run-tim. In conclusion, run-time could be reduced up to 30% compared with the second results. This Proposed model was tested by several optimization scenarios. The results in this study reveals that signal timing plan in KS-SIGNAL is closer to PASSER-II (bandwidth maximizing model) rather than to TRANSYT-7F(delay minimizing model).

  • PDF