• 제목/요약/키워드: Optimized vessel

검색결과 92건 처리시간 0.026초

The KSTAR Vacuum Pumping and Fueling System Upgrade

  • Lim, J.Y.;Chung, K.H.;Cho, S.Y.;Lee, S.K.;Shin, Y.H.;Hong, S.S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.39-39
    • /
    • 1999
  • The KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak is a nuclear fusion experimental device for a long pulse/steady-state plasma operation, adopting fully superconducting magnets. In accordance with completion of the basic design of the torus vacuum vessel and the enclosing cryostat, the vacuum pumping and gas fueling basic design has been developed to fulfil the physics requirements. The ultra-high vacuum pumping and sophisticated gas fueling system of the machine is essential to achieve such roles for optimized plasma performance and operation. Recently the vacuum exhaust system using dedicated pumping ports for the vacuum vessel and cryostat has been modified to meet more reliable and successful performance of the KSTAR[Fig. 1].In order to achieve the required base pressure of 5 x 10-9 torr, the total impurity load to the vessel internal is limited to ~5 x 10-5 torr-1/x, while the cryostat base pressure is kept as ~5 x 105 torr to mitigate the thermal load applied to the superconducting magnets. Each KSTAR fueling system will be separately capable of fueling gas at a rate of 50 torr-1/x, consistent with the given pumping throughput. In order to initiate a plasma discharge in KSTAR, the vacuum vessel is filled to a gas pressure of few 10-6 to few 10-4 torr, and additional gas injection is required to maintain and increase the plasma density during the course of the discharge period.

  • PDF

천해역 선박 소음 자동 탐지를 위한 인공지능 기법 적용 (Application of the artificial intelligence for automatic detection of shipping noise in shallow-water)

  • 김선효;정섬규;강돈혁;김미라;조성호
    • 한국음향학회지
    • /
    • 제39권4호
    • /
    • pp.279-285
    • /
    • 2020
  • 항행 선박의 시·공간적 모니터링 기술 연구는 연안 해양공간에서 해양 생태계 보호 및 효율적인 관리를 위해서 중요하다. 본 연구에서는 실험해역에서 측정된 선박 소음 특징인 광대역 줄무늬 패턴 자료에 인공지능 기술을 적용하여 항행하는 선박을 자동 탐지하는 연구를 수행하였다. 소음 스펙트럼 이미지와 선박의 항행정보를 수집하기 위한 해상시험은 2016년 7월 15일부터 26일까지 제주 남부 해역에서 실시되었고, 컨볼루션 신경망 모델은 수집된 이미지를 기반으로 학습, 교차검증 과정을 거쳐 최적화되었다. 선박 소음 자동 탐지 기법의 성능은 정밀도(0.936), 재현율(0.830), 평균 정밀도(0.824) 그리고 정확도(0.949)로 평가되었다. 결론적으로 인공지능 기법을 활용하여 선박 소음의 자동 탐지 가능성을 확인하였다. 본 연구의 결과로부터 성능을 향상시킬 수 있는 방안 및 향후 연구에 대하여 제안하였다.

변형후 형상의 최적화를 위한 동맥과 PTFE 문합의 직경비 연구 (The Study on the Diameter Ratio of the Artery-PTFE Anastomosis for the Optimized Deformed Shape)

  • 이성욱;심재준;한근조
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권2호
    • /
    • pp.113-119
    • /
    • 2003
  • 본 연구에서는 end-to-end 문합시 변형된 직경의 불일치로 인하여 발생하게 되는 혈관질환을 방지하기 위하여 기계역학적 거동을 유한요소 법을 이용하여 해석한 결과를 나타내었다. 이 연구에서는 서로 다른 직경을 가지는 동맥과 인공혈관인 PTFE의 문합시 봉합으로 인한 예변형을 고려하였으며, 봉합된 문합부에 수축기혈압인 120mmHg(16.0KPa)을 작용시켜 혈관의 변형을 분석하였다. 변형 후 최종 문합부의 형상은 동맥과 PTFE의 초기 직경비(R$_{I}$)와 PTFE의 두께에 대하여 분석하였다. 그리고 동맥과 PTFE의 초기 직경비가 문합부에서 발생되는 응력에 어떠한 영향을 미치는지에 대하여 해석하여 다음과 같은 결과를 얻었다. 1. 혈관내막의 증식등을 고려하지 않고 봉합으로 인한 예변형과 수축기 혈압만을 고려할 경우 가장 이상적인 초기 직경비(R$_{I}$)는 1.073이다. 2. 상당응력과 원주방향응력은 초기 직경비(R$_{I}$) 증가에 따라 증가하며 모두 접합부에서 PTFE측으로 0.4mm 떨어진 지점에서 최대값이 발생하였다.

최적 노즐형상을 갖는 수중램제트의 추진성능에 관한 연구 (A Study on Propulsion Performance of Underwater Ram-Jet with Optimized Nozzle Configuration)

  • 강호근;김유택;이영호
    • 대한조선학회논문집
    • /
    • 제34권4호
    • /
    • pp.42-52
    • /
    • 1997
  • 수중램제트(underwater ram-jet)는 램흡입부(ram intake), 혼합실(mixing chamber) 및 노즐(nozzle)로 구성되어 있으며, 램흡입부로 유입된 작동유체는 압력이 증가되며 이 증압된 작동유체에 혼합실로부터 고압공기를 분사하여 기 액이상류를 형성하여 노즐을 통과하면서 대기압까지 팽창을 하여 작동유체를 고속으로 가속시켜 노즐출구로부터 추력을 얻는 방식으로 차세대 초고속 선박추진장치이다. 본 연구에서는 80노트를 낼 수 있는 선내관통형(buried type vessel) 램제트의 최적 노즐형상데이터를 이용하여 제반변수(벽마찰계수, 가스속도, 기포반경, 대기온도, 질량유량비, 디퓨저면적비, 작동유체의 속도구배)의 변화가 추진특성에 미치는 영향을 파악하였다.

  • PDF

대형 압력용기 제작을 위한 9Ni-4Co-0.3C 강의 드로잉공정 설계에 관한 연구 (Design of drawing process of 9Ni-4Co-0.3C steel to make a large pressure vessel)

  • 홍진태;이석렬;김경진;양동열;이경훈;최문선
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.93-99
    • /
    • 2005
  • In this work, computer-aided process design is carried out to develop an optimal preform of a pressure vessel. Knowledge-based rules are employed to design the preform, and they are formulated using the handbooks of plasticity theories. In the FE-analysis, a commercial finite element code, ABAQUS was employed. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed fur various combinations of die design parameters. The length of the land of die, the clearance between punch and die and the clearance between the blank holder and die are optimized to minimize the forming load. The results of the simulations are verified with the experiments which are scaled down to one tenth of the actual size.

Operation Profile을 고려한 5,000TEU급 컨테이너선 선형개발 (Hull Form Development of 5,000TEU Class Container Carrier considering the Operation Profile)

  • 김진우;박성우;이평국;이왕수;선재욱
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2017년도 특별논문집
    • /
    • pp.59-62
    • /
    • 2017
  • Recently oil price has got lower, but energy efficiency has been considered as an important factor to minimize ship operational costs and reduce greenhouse gas emissions. For the reason, it is necessary that energy efficiency improvement for hull form design and operational performance reflect an understanding of the vessel's operational profile. Throughout the life of the vessel, this can lead to important economies of fuel, even if, in some cases, a small penalty can be taken for design condition. In the present paper, hull form was developed for 5,000TEU class container carrier at given operation profile. As a CFD result at several design point, optimized hull form has improved resistance performance in comparison with the basis hull form. To reducing the viscosity and the wave resistance at multi draft and multi speed, the hull form was investigated for Cp-curve, frame and local shape. Numerical study has been performed using WAVIS & Star-CCM+ and verified by model test in the towing tank.

  • PDF

PROPOSAL FOR DUAL PRESSURIZED LIGHT WATER REACTOR UNIT PRODUCING 2000 MWE

  • Kang, Kyoung-Min;Noh, Sang-Woo;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1005-1014
    • /
    • 2009
  • The Dual Unit Optimizer 2000 MWe (DUO2000) is put forward as a new design concept for large power nuclear plants to cope with economic and safety challenges facing the $21^{st}$ century green and sustainable energy industry. DUO2000 is home to two nuclear steam supply systems (NSSSs) of the Optimized Power Reactor 1000 MWe (OPR1000)-like pressurized water reactor (PWR) in single containment so as to double the capacity of the plant. The idea behind DUO may as well be extended to combining any number of NSSSs of PWRs or pressurized heavy water reactors (PHWRs), or even boiling water reactors (BWRs). Once proven in water reactors, the technology may even be expanded to gas cooled, liquid metal cooled, and molten salt cooled reactors. With its in-vessel retention external reactor vessel cooling (IVR-ERVC) as severe accident management strategy, DUO can not only put the single most querulous PWR safety issue to an end, but also pave the way to very promising large power capacity while dispensing with the huge redesigning cost for Generation III+ nuclear systems. Five prototypes are presented for the DUO2000, and their respective advantages and drawbacks are considered. The strengths include, but are not necessarily limited to, reducing the cost of construction by decreasing the number of containment buildings from two to one, minimizing the cost of NSSS and control systems by sharing between the dual units, and lessening the maintenance cost by uniting the NSSS, just to name the few. The latent threats are discussed as well.

CFD를 활용한 연료전지 모듈 보호가스 유동 연구 (CFD-based Flow Simulation Study of Fuel Cell Protective Gas)

  • 권기욱;임종구;박종철;신현길
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.86.1-86.1
    • /
    • 2011
  • To improve the safety, the fuel cell operate inside a pressurized enclosure which contains inert gas so called protective gas. The protective gas not only prevents the mixture of hydrogen and oxygen, but also removes the water in the vessel with the condenser. This study presents the details of the flow optimization in order to reduce the humidity in the fuel cell housing. The protective gas flow in the fuel cell container is studied by Computational Fluid Dynamics(CFD) simulations. This study focuses on optimizing the geometry of an protective gas circulation system in fuel cell module to reduce the humidity in the vessel. CFD analysis was carried out for an existing model to understand the flow behavior through the fuel cell system. Based on existing model CFD results, geometrical changes like inlet placement, optimization of outlet size, modification of fuel cell module system are carried out, to improve the flow characteristics. The CFD analysis of the optimized model is again carried out and the results show good improvement in protective gas flow behavior.

  • PDF

Comparative Study of P-T Limit Curves between 1998 ASME and 2017 ASME Code Applied to Typical OPR1000 Reactors

  • Maragia, Joswhite Ondabu;Namgung, Ihn
    • 한국압력기기공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.1-8
    • /
    • 2019
  • The integrity of the Reactor Pressure Vessel (RPV) is affected by the neutrons bombarding the vessel wall leading to embrittlement. This irradiation-induced embrittlement leads to reduction in the fracture toughness of RPV materials. This paper presents a comparative study of typical Optimized Power Reactor (OPR)1000 reactor pressure-temperature (P-T) limit curves using the pre-2006 American Society of Mechanical Engineers (ASME) editions used in the power plant and the current ASME edition of 2010. The current ASME Code utilizes critical reference stress intensity factor based on the lower bound of static, while the Pre-2006 ASME editions are based the critical reference stress intensity factor based on the lower bound of static, dynamic and crack arrest. Model-Based Systems Engineering approach was used to evaluate ASME Code Section XI Appendix G for generating the P-T limit curves. The results obtained from this analysis indicate decrease in conservatism in P-T limit curves constructed using the current 2017 ASME code, which can potentially increase operational flexibility and plant safety. Hence it is recommended to use ASME code edition after 2006 be used in all operating nuclear power plants (NPPs) to establish P-T limit curve.

선박용 중앙냉각시스템의 해수 펌프 용량조절에 따른 에너지 절감 기법에 관한 연구 (A Study on the Energy Saving Method by controlling Capacity of Sea Water Pump in Central Cooling System for Vessel)

  • 이지영;유희한;김연형;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.592-598
    • /
    • 2007
  • The fuel charge is getting higher in navigation cost. Therefore, shipowners try to find the method for reducing oil consumption. ESS(Energy Saving System) is one of he method. ESS is the system consisted with two inverters, ESS control unit and monitoring system. Two inverters control two main sea water cooling pumps. In the ESS control Unit, the control algorithm finds optimized point to decrease a power consumption of main sea water cooling pumps. Monitoring system observes ESS not to work improperly. ESS is experimented in the laboratory with real condition and analyzed in every view. After experiment, the result of the experiment shows that the control algorithm works correctly and safely. ESS has a plan to be operated in the ship soon. In that case, additional devices are needed to connect ESS with cooling system of the vessel. So the development of addition device is needed and being studied.