• Title/Summary/Keyword: Optimized separation condition

Search Result 40, Processing Time 0.027 seconds

Development of a Denaturing High-Performance Liquid Chromatography (DHPLC) Assay to Detect Parasite Infection in Grass Shrimp Palaemonetes pugio

  • Cho, Sang-Man
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.2
    • /
    • pp.107-115
    • /
    • 2012
  • In developing a useful tool to detect parasitic dynamics in an estuarine ecosystem, a denaturing high-performance liquid chromatography (DHPLC) assay was optimized by cloning plasmid DNA from the grass shrimp Palaemonetes pugio, and its two parasites, the trematode Microphallus turgidus and bopyrid isopod Probopyrus pandalicola. The optimal separation condition was an oven temperature of $57.9^{\circ}C$ and 62-68% of buffer B gradient at a flow rate of 0.45 mL/min. A peptide nucleic acid blocking probe was designed to clamp the amplification of the host gene, which increased the amplification efficiency of genes with low copy numbers. Using the DHPLC assay with wild-type genomic, the assay could detect GC Gram positive bacteria and the bopyrid isopod (P. pandalicola). Therefore, the DHPLC assay is an effective tool for surveying parasitic dynamics in an estuarine ecosystem.

Shape Optimization of Swept, Leaned, and Skewed Blades in a Transonic Axial Compressor for Enhancing Rotor Efficiency (효율 향상을 위한 축류 압축기 동익의 스윕, 린, 스큐각의 형상 최적화)

  • Jang, Choon-Man;Samad, Abdus;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.525-532
    • /
    • 2005
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using response surface method and three-dimensional Navier-Stokes analysis. Three design variables of blade sweep. lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor. the adiabatic efficiency is increased by reducing the tub comer and tip losses. Separation line due to the interference between a passage shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one.

  • PDF

Computational Study of Impingement Characteristics of Assist Gas from Coaxial/Off-axis Nozzles in Laser Machining (레이저 가공에서 동축/탈축 보조가스의 충돌특성에 관한 수치해석적 연구)

  • Yoon, Shi-Kyung;Sung, Hong-Gye;Lee, Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.14-19
    • /
    • 2010
  • A computational study was carried out to analyze the characteristics of supersonic (Mach 2.0) coaxial/off-axis jet's impingements on a slanted kerf surface in laser machining. The effects of various parameters such as gas pressure, distance between nozzle exit and kerf edge surface, and application of off-axis nozzles on the impingement phenomena of the assist-gas on kerf surface were observed. The present study showed that simply increasing the assist-gas pressure for coaxial supersonic nozzle was not effective to alleviate the strength of flow separation on kerf surface. It also presented the optimized operating condition of the coaxial nozzle to have the highest skin friction values over kerf surface.

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

Separation of Goid, Palladium and Platinum in Chromite by Anion Exchange Chromatography for Inductively Coupled Plasma Atomic Emission Spectrometric Analysis

  • Choe, Gwang Sun;Lee, Chang Hyeon;Park, Yeong Jae;Jo, Gi Su;Kim, Won Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.801-806
    • /
    • 2001
  • A study has been carried out on the separation of gold, iridium, palladium, rhodium, ruthenium and platinum in chromite samples and their quantitative determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution condition of the minerals by fusion with sodium peroxide was optimized and chromatographic elution behaviour of the rare metals was investigated by anion exchange chromatography. Spectral interference of chromium, a matrix of the minerals, was investigated on determination of gold. Chromium interfered on determination of gold at the concentration of 500 mg/L and higher. Gold plus trace amounts of iridium, palladium, rhodium and ruthenium, which must be preconcentrated before ICP-AES was separated by anion exchange chromatography after reducing Cr(Ⅵ) to Cr(III) by H2O2. AuCl4- retained on the resin column was selectively eluted with acetone- HNO3-H2O as an eluent. In addition, iridium, palladium, rhodium and ruthenium remaining on the resin column were eluted as a group with concentrated HCl. However, platinum was eluted with concentrated HNO3. The recovery yield of gold with acetone-HNO3-H2O was 100.7 ${\pm}2.0%$, and the yields of palladium and platinum with concentrated HCl and HNO3 were 96.1 ${\pm}1.8%$ and 96.6 ${\pm}1.3%$, respectively. The contents of gold and platinum in a Mongolian chromite sample were 32.6 ${\pm}$ 2.2 ${\mu}g$/g and 1.6 $\pm$ 0.14 ${\mu}g$/g, respectively. Palladium was not detected.

A study on the optimized coagulation for separation of liquid and solid from CMP waste (CMP 폐액의 고액 분리를 위한 최적 응집조건에 관한 연구)

  • Hong, Seongho;Oh, Suckhwan
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • The waste slurry generated from CMP process contains particulate and heavy metals. It is hard to treat the waste slurry by conventional treatment method because the particulates in the waste are too fine to be easily separated the solid from the waste for the purpose of water recycling. The investigation was focused on finding the optimum condition of coagulation with two different coagulants. When the solid content in the waste slurry solution was 0.1wt%, the optimal ranges of pH and PACl concentration were 4~6 and 20~50 mg/L, respectively. When the solid content was increased to 0.5wt%, the optimal condition was 4~5 for pH and 50~100 mg/L for PACl concentration.

  • PDF

Digital n-γ Pulse Shape Discrimination in Organic Scintillators with a High-Speed Digitizer

  • Kim, Chanho;Yeom, Jung-Yeol;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.2
    • /
    • pp.53-63
    • /
    • 2019
  • Background: As neutron fields are always accompanied by gamma rays, it is essential to distinguish neutrons from gamma rays in the detection of neutrons. Neutrons and gamma rays can be separated by pulse shape discrimination (PSD) methods. Recently, we performed characterization of a stilbene scintillator detector and an EJ-301 liquid scintillator detector with a high-speed digitizer DT5730 and investigated optimized PSD variables for both detectors. This study is for providing a basis for developing fast neutron/gamma-ray dual-particle imager. Materials and Methods: We conducted PSD experiments using stilbene scintillator and EJ-301 liquid scintillator and evaluated neutron and gamma ray discriminability of each PSD method with a $^{137}Cs$ gamma source and a $^{252}Cf$ neutron source. We implemented digital signal processing techniques to apply two PSD methods - the charge comparison (CC) method and the constant time discrimination (CTD) method - to distinguish neutrons from gamma rays. We tried to find optimized PSD variables giving the best discriminability in a given experimental condition. Results and Discussion: For the stilbene scintillator detector, the charge comparison method and the constant time discrimination method both delivered the PSD FOM values of 1.7. For the EJ-301 liquid scintillator detector, both PSD methods delivered the PSD FOM values of 1.79. With the same PSD variables, PSD performance was excellent in $300{\pm}100keVee$, $500{\pm}100keVee$, and $700{\pm}100keVee$ energy regions. This result shows that we can achieve an effective discrimination of neutrons from gamma rays using these scintillator detector systems. Conclusion: We applied both PSD methods to a stilbene and a liquid scintillator and optimized the PSD performance represented by FOM values. We observed a good separation performance of both scintillators combined with a high-speed digitizer and digital PSD. These results will provide reference values for the dual-particle imager we are developing, which can image both fast neutrons and gamma rays simultaneously.

Preparation of Asymmetric Folyethersulfone Hollow Fiber Membranes for Flue Gas Separation (온실기체 분리용 폴리이서설폰 비대칭 중공사 막의 제조)

  • Kim Jeong-Hoon;Sohn Woo-Ik;Choi Seung-Hak;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.147-156
    • /
    • 2005
  • It is well-known that polyethersulfone (PES) has high $CO_2$ selectivity over $N_2\;(or\;CH_4)$ and excellent pressure resistance of $CO_2$ plasticization among muy commercialized engineering plastics[1-4]. Asymmetric PES hollow fiber membranes for flue gas separation were developed by dry-wet spinning technique. The dope solution consists of PES, NMP and acetone. Water and water/NMP mixtures are used in outer and inner coagulants, respectively. Gas permeation rate (i.e., permeance) and $CO_2/N_2$ selectivity were measured with pure gas, respectively and the micro-structure of hollow fiber membranes was characterized by scanning electron microscopy. The effects of polymer concentration, ratio of NMP to acetone, length of air gap, evaporation condition and silicone coating were investigated on the $CO_2/N_2$ separation properties of the hollow fibers. Optimized PES hollow fiber membranes exhibited high permeance of $25\~50$ GPU and $CO_2/N_2$ selectivity of $30\~40$ at room temperature and have the apparent skin layer thickness of about $0.1\;{\mu}m$. The developed PES hollow fiber membranes, would be a good candidate suitable for the flue gas separation process.

Optimization of fish oil extraction from Lophius litulon liver and fatty acid composition analysis

  • Hu, Zhiheng;Chin, Yaoxian;Liu, Jialin;Zhou, Jiaying;Li, Gaoshang;Hu, Lingping;Hu, Yaqin
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.76-89
    • /
    • 2022
  • The Lophius litulon liver was used as raw material for the extraction of fish oil via various extraction methods. The extraction rate by water extraction, potassium hydroxide (KOH) hydrolysis and protease hydrolysis were compared and the results revealed the protease hydrolysis extraction had a higher extraction rate with good protein-lipid separation as observed by optical microscope. Furthermore, subsequent experiments determined neutrase to be the best hydrolytic enzyme in terms of extraction rate and cost. The extraction conditions of neutrase hydrolysis were optimized by single-factor experiment and response surface analysis, and the optimal extraction rate was 58.40 ± 0.25% with the following conditions: enzyme concentration 2,000 IU/g, extraction time 1.0 h, liquid-solid ratio 1.95:1, extraction temperature 40.5℃ and pH 6.5. The fatty acids composition in fish oil from optimized extraction condition was composed of 19.75% saturated fatty acids and 80.25% unsaturated fatty acids. The content of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were 8.06% and 1.19%, respectively, with the ratio (6.77:1) surpassed to the recommendation in current researches (5:1). The results in this study suggest protease treatment is an efficient method for high-quality fish oil extraction from Lophius litulon liver with a satisfactory ratio of DHA and EPA.

Quantitative Analyses for the Quality Evaluation of Salviae Miltiorrhizae Radix by HPLC

  • Fang, Zhe;Moon, Dong-Cheul;Son, Kun-Ho;Son, Jong-Keun;Min, Byung-Sun;Woo, Mi-Hee
    • Natural Product Sciences
    • /
    • v.16 no.4
    • /
    • pp.251-258
    • /
    • 2010
  • In this study, quantitative analysis for the quality evaluation of Salviae Miltiorrhizae Radix using HPLC/UV was developed. For quantitative analysis, six major bioactive compounds were determined. The separation conditions employed for HPLC/UV were optimized using ODS $C_{18}$ column ($250{\times}4.6\;mm$, $5\;{\mu}m$) with gradient condition of A (1% formic acid in $H_2O$) and B (acetonitrile : methanol : formic acid = 100 : 75 : 1) as the mobile phase at a flow rate of 1.0 mL/min and a detection wavelength of 280 nm. These methods were fully validated with respect to the linearity, accuracy, precision and recovery. The HPLC/UV method was applied successfully to the quantification of six major compounds in the Salviae Miltiorrhizae Radix. The results indicate that the established HPLC/UV method is suitable for the quantitative analysis.