• Title/Summary/Keyword: Optimized mechanism

Search Result 386, Processing Time 0.026 seconds

Prediction Modeling of Unburned Hydrocarbon Oxidation in the Exhaust Port of a Propane-Fueled SI Engine (프로판 엔진의 배기 포트에서 탄화수소 산화 예측을 위한 모델링)

  • 이형승;박종범;최회명;민경덕;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • In order to investigate the exhaust structure and secondary oxidation of unburned hydrocarbon (HC) in the exhaust port, a numerical simulation was performed with 3-dimensional flow model and oxidation mechanism optimized for port oxidation. To predict the exhaust and oxidation process with consideration of flow, mixing, and temperature, 3-dimensional flow model and HC oxidation model were used with a commercial computational program, STAR-CD. The flow model were with moving grid for valve motion, which could predict the change of flow field with respect to valve lift. Optimization was performed to predict the HC oxidation with temperature range of 1200~1500K, low HC and oxygen concentration, existence of intermediate species, as typical in port oxidation. The constructed model could predict the port oxidation process with oxidation degree of 14~48% according to the engine operation conditions.

  • PDF

A Study on Shapes of CTBA for Road Noise Reduction (CTBA 형상에 따른 로드노이즈 상관성 평가)

  • Lee, Moon Seok;Lim, Ji Min;Lee, Chan;Baik, Hong Sun;Hwang, Chulha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.600-604
    • /
    • 2013
  • A CTBA(Coupled Torsion Beam Axle) is a general type for rear suspension of small/compact sedans. It connects left and right knuckles using torsion beam axle and trails rear wheels. Therefore, a CTBA performs a main role of ride & handing. But, a CTBA suspension has main bending mode around 120Hz and causes road booming noise in the interior of a car. Therefore, the mode control of a CTBA is very important for reducing road noise. In this paper, we optimized the shape of a CTBA to reduce road noise considering R&H performance, simultaneously. The vibration mechanism of CTBA was investigated using ODS(Operational Deflection Shape) and mode shape.

  • PDF

Force Feedback Control of 3 DOF Haptic Device Utilizing Electrorheological Fluid (ER 유체를 이용한 3 자유도 햅틱 장치의 힘 반향 제어)

  • Han, Y.M.;Kang, P.S.;Choi, S.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.213-216
    • /
    • 2005
  • This paper presents force feedback control performance of a 3DOF haptic device that can be used for minimally invasive surgery (MIS). As a first step, a 3DOF electrorheological (ER) joint is designed using a spherical mechanism. And it is optimized based on the mathematical torque modeling. Subsequently, the master haptic device is manufactured by the spherical joint. In order to achieve desired force trajectories, model based compensation strategy is adopted for the ER master. Therefore, Preisach model fur the PMA-based ER fluid is identified using experimental first order descending (FOD) curves. A compensation strategy is then formulated through the model inversion to achieve desired force at the ER master. Tracking control performances for sinusoidal force trajectory are presented, and their tracking errors are evaluated.

  • PDF

A Novel Optimization Algorithm Inspired by Bacteria Behavior Patterns

  • Jung, Sung-Hoon;Kim, Tae-Geon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.392-400
    • /
    • 2008
  • This paper proposes a novel optimization algorithm inspired by bacteria behavior patterns for foraging. Most bacteria can trace attractant chemical molecules for foraging. This tracing capability of bacteria called chemotaxis might be optimized for foraging because it has been evolved for few millenniums. From this observation, we developed a new optimization algorithm based on the chemotaxis of bacteria in this paper. We first define behavior and decision rules based on the behavior patterns of bacteria and then devise an optimization algorithm with these behavior and decision rules. Generally bacteria have a quorum sensing mechanism that makes it possible to effectively forage, but we leave its implementation as a further work for simplicity. Thereby, we call our algorithm a simple bacteria cooperative optimization (BCO) algorithm. Our simple BCO is tested with four function optimization problems on various' parameters of the algorithm. It was found from experiments that the simple BCO can be a good framework for optimization.

Topology Graph Generation Based on Link Lifetime in OLSR (링크 유효시간에 따른 OLSR 토폴로지 그래프 생성 방법)

  • Kim, Beom-Su;Roh, BongSoo;Kim, Ki-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.219-226
    • /
    • 2019
  • One of the most widely studied protocols for tactical ad-hoc networks is Optimized Link State Routing Protocol (OLSR). As for OLSR research, most research work focus on reducing control traffic overhead and choosing relay point. In addition, because OLSR is mostly dependent on link detection and propagation, dynamic Hello timer become research challenges. However, different timer interval causes imbalance of link validity time by affecting link lifetime. To solve this problem, we propose a weighted topology graph model for constructing a robust network topology based on the link validity time. In order to calculate the link validity time, we use control message timer, which is set for each node. The simulation results show that the proposed mechanism is able to achieve high end-to-end reliability and low end-to-end delay in small networks.

Future Trends of Blockchain and Crypto Currency: Challenges, Opportunities, and Solutions

  • Sung, Yunsick;Park, James J.(Jong Hyuk)
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.457-463
    • /
    • 2019
  • The blockchain and crypto currency has become one of the most essential components of a communication network in the recent years. Through communication networking, we browse the internet, make VoIP phone calls, have video conferences and check e-mails via computers. A lot of researches are being conducting to address the blockchain and crypto currency challenges in communication networking and provide corresponding solutions. In this paper, a diverse kind of novel research works in terms of mechanisms, techniques, architectures, and frameworks have been proposed to provide possible solutions against the existing challenges in the communication networking. Such novel research works involve thermal load capacity techniques, intelligent sensing mechanism, secure cloud computing system communication algorithm for wearable healthcare systems, sentiment analysis, optimized resources.

Design and fabrication of a new piezoelectric paper feeder actuator without mechanical parts

  • Ghorbanirezaei, Shahryar;Hojjat, Yousef;Ghodsi, Mojtaba
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.183-191
    • /
    • 2019
  • A piezoelectric paper feeder actuator using Micro Virtual Roller (MVR) is proposed, designed, fabricated and tested. This actuator can drive a sheet of paper forward or backward without any mechanical parts, such as the costly and heavy rollers used in traditional paper feeders. In this paper feeder actuator, two vibrating stators which produce traveling waves are used to drive the paper. The vibrations of the stators are similar to those of piezoelectric motors and follow a similar procedure to move the paper. A feasibility study simulated the actuator in COMSOL Multiphysics Software. Traveling wave and elliptical trajectories were obtained and the dimensions of the stator were optimized using FEM so that the paper could move at top speed. Next, the eigenfrequencies of the actuator was determined. Experimental testing was done in order to validate the FEM results that revealed the relationships between speed and parameters such as frequency and voltage. Advantages of this new mechanism are the sharp decrease in power consumption and low maintenance.

MO Studies on the Gas-Phase Reaction of Dypnone Oxide with Chloride Ion$^\dag$

  • Kim, Wang-Ki;Sohn, Chang-Kook;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.279-282
    • /
    • 1986
  • The MNDO calculations were performed in order to investigate the gas-phase reaction mechanism of 2-propene-1-al oxide, as a model compound of dypnone oxide(1,3-diphenyl-2-butene-1-one oxide) with the chloride ion. Optimized geometries and heats of formation for two probable concerted pathways, CHO and H migration, were determined and their activation energies were obtained. MO results show that although the formyl migration is thermodynamically more favorable than the hydride migration, the latter kinetically predominates over the formyl migration, which is contrary to the established migrating preferences. It is concluded that the hydride migratory propensity is catalyzed by the chloride ion by reducing the capability of the carbonyl ${\pi}$ bond to participate in the migration.

An Optimized Pre-authentication Mechanism in WLAN-enabled Heterogeneous Wireless Networks (무선 이기종망에서 무선랜의 선인증 최적화 기법)

  • Seo, SungHoon;Baek, JaeJong;Lee, JongHyup;Song, JooSeok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1124-1125
    • /
    • 2009
  • 본 연구에서는 무선 이기종망 환경에서 운용되는 듀얼모드 단말이 현재의 연결을 무선랜으로 변경하는 경우에 필요한 선인증 과정의 최적화 기법을 제안한다. 제안된 인증 기법은 빠른 채널 변경 기술을 MAC(Media Access Control) 기능에 적용하여 현재 활성화 된 패킷 데이터 통신에 손실을 최소화 하고 핸드오프 과정에서 발생할 수 있는 인증 과정에 필요한 지연시간을 단축한다. 또한 시뮬레이션 실험을 통하여, 기존에 제안된 전통적인 인증 방법을 사용하는 일반적인 방식 보다 빠른 핸드오프를 수행하여 끊김없는 연결성을 보장함을 보인다.

Enhanced Adhesion of Tire Cords via Argon Etching and Acetylene Plasma Polymerization (아르곤 에칭과 아세틸렌 플라즈마 중합에 의한 타이어 코드의 접착성 향상연구)

  • H. M. Kang;Kim, R. K.;T. H. Yoon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.36-39
    • /
    • 1999
  • Steel tire cords were coated via RF Plasma Polymerization of acetylene in order to enhance adhesion to rubber compounds. Adhesion of tire cords was measured by TACT as a function of plasma polymerization and argon etching conditions such as power, treatment time and chamber pressure. Tested tire cords were analysed by SEM to elucidate the adhesion mechanism. The highest adhesion values were obtained with argon etching condition at 90W, 10min, 30mtorr followed by acetylene plasma polymerization condition at 10W, 30sec., 30mtorr. In SEM analysis, the plasma polymerized tire cord at the optimized condition showed 100% rubber coverage as observed from brass-plated steel tire cords.

  • PDF