• 제목/요약/키워드: Optimized algorithm

검색결과 1,806건 처리시간 0.037초

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du;Ximeng Ma;Chenxi Dong;Mehrdad Sattari Nikkhoo
    • Geomechanics and Engineering
    • /
    • 제36권3호
    • /
    • pp.259-276
    • /
    • 2024
  • The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.

안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 2. 계절별 최적화 및 사례 분석 (Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 2. Seasonal Optimization and Case Studies)

  • 박이준;김정훈
    • 대기
    • /
    • 제33권5호
    • /
    • pp.531-548
    • /
    • 2023
  • We developed the Aviation Convective Index (ACI) for predicting deep convective area using the operational global Numerical Weather Prediction model of the Korea Meteorological Administration. Seasonally optimized ACI (ACISnOpt) was developed to consider seasonal variabilities on deep convections in Korea. Yearly optimized ACI (ACIYrOpt) in Part 1 showed that seasonally averaged values of Area Under the ROC Curve (AUC) and True Skill Statistics (TSS) were decreased by 0.420% and 5.797%, respectively, due to the significant degradation in winter season. In Part 2, we developed new membership function (MF) and weight combination of input variables in the ACI algorithm, which were optimized in each season. Finally, the seasonally optimized ACI (ACISnOpt) showed better performance skills with the significant improvements in AUC and TSS by 0.983% and 25.641% respectively, compared with those from the ACIYrOpt. To confirm the improvements in new algorithm, we also conducted two case studies in winter and spring with observed Convectively-Induced Turbulence (CIT) events from the aircraft data. In these cases, the ACISnOpt predicted a better spatial distribution and intensity of deep convection. Enhancements in the forecast fields from the ACIYrOpt to ACISnOpt in the selected cases explained well the changes in overall performance skills of the probability of detection for both "yes" and "no" occurrences of deep convection during 1-yr period of the data. These results imply that the ACI forecast should be optimized seasonally to take into account the variabilities in the background conditions for deep convections in Korea.

센서 네트워크 상에서의 HUMMINGBIRD2 암호화 속도 최적화 구현기법 (A Speed Optimized Implementation Technique of HUMMINGBIRD2 Encryption over Sensor Network)

  • 서화정;김호원
    • 한국통신학회논문지
    • /
    • 제37권6B호
    • /
    • pp.414-422
    • /
    • 2012
  • 본 논문에서는 초경량 대칭키 암호화 기법인 HUMMINGBIRD2 알고리즘을 센서 모트상에서의 최적화 구현기법을 제시한다. 효율적인 구현을 위해 센서보드상에 제공되는 레지스터의 활용을 극대화하며 최적화된 주소접근 기법을 적용하여 암복호화에 소요되는 시간을 최소화하였다. 해당 대칭키 암호화 구현기법을 통해 자원 한정적인 센서 상에서의 안전하고 효율적인 보안 통신이 가능하도록 한다.

태스크 복제 기반 프로세서 할당 방법에 최적화된 태스크 우선순위 결정 알고리즘 (A Task Prioritizing Algorithm Optimized for Task Duplication Based Processor Allocation Method)

  • 송인성;윤완오;이창호;최상방
    • 인터넷정보학회논문지
    • /
    • 제12권6호
    • /
    • pp.1-17
    • /
    • 2011
  • 분산 이기종 컴퓨팅 시스템의 성능은 입력 그래프인 방향성 비순환 그래프DAG)를 스케줄링 하는 알고리즘의 성능에 따라 좌우된다. 그러나 분산 이기종 컴퓨팅 시스템에서의 태스크 스케줄링은 NP-complete 문제로 휴리스틱 방법으로 접근해야한다. 태스크 스케줄링 알고리즘은 우선순위 결정 단계와 프로세서 할당 단계로 구성되며, 많은 연구들이 두 단계를 함께 고려하고 있다. 본 논문에서는 태스크 우선순위 결정 단계에 초점을 맞추어 태스크 복제 기반 프로세서 할당 방법에 최적화된 태스크 우선순위 결정 알고리즘인 WPD 알고리즘을 제안한다. 제안하는 WPD 알고리즘의 성능 분석을 위해 태스크 복제 기반 프로세서 할당 방법을 사용하는 기존의 태스크 스케줄링 알고리즘인 HMPID, HCPFD, HCT 알고리즘의 프로세서 할당 단계에 본 논문에서 제안하는 WPD 알고리즘을 결합하여 성능을 비교하였다. 그 결과 본 논문에서 제안하는 WPD 알고리즘이 기존 태스크 우선순위 결정 방법에 비해 태스크 복제를 더욱 효율적으로 사용하여 HCPFD 알고리즘보다 9.58%, HCT 알고리즘보다 1.31% 성능 향상이 있는 것을 확인하였다.

GB-SAR의 개발 (II) : 영상화 기법 (Development of a GB-SAR (II) : Focusing Algorithms)

  • 이훈열;성낙훈;김정호;조성준
    • 대한원격탐사학회지
    • /
    • 제23권4호
    • /
    • pp.247-256
    • /
    • 2007
  • 이 논문에서는 GB-SAR(Ground-Based Synthetic Aperture Radar) 시스템의 영상화 기법(focusing algorithm)을 소개하고 최적의 영상화 기법을 찾고자 하였다. GB-SAR 영상의 형성 원리, 메모리 및 처리 시간과 관련하여 Deramp-FFT (DF) 기법과 Range-Doppler (RD) 기법의 특징과 장단점을 소개하였다. DF 기법은 처리비용이 적게 들지만 근거리에서는 영상화가 이루어지지 않는 단점이 있으며, RD 기법은 전 영역에서 영상화가 이루어지지만, 합성 구경의 길이가 레일로 제한되어 있는 GB-SAR의 특성상원거리에서는 메모리와 자료처리 시간에 낭비적 요소가 많다. 결과적으로, GB-SAR 영상화를 위하여 원거리에서는 DF 기법을, 근거리에서는 RD 기법을 사용하여 최적화하였다.

Modeling and assessment of VWNN for signal processing of structural systems

  • Lin, Jeng-Wen;Wu, Tzung-Han
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.53-67
    • /
    • 2013
  • This study aimed to develop a model to accurately predict the acceleration of structural systems during an earthquake. The acceleration and applied force of a structure were measured at current time step and the velocity and displacement were estimated through linear integration. These data were used as input to predict the structural acceleration at next time step. The computation tool used was the Volterra/Wiener neural network (VWNN) which contained the mathematical model to predict the acceleration. For alleviating problems of relatively large-dimensional and nonlinear systems, the VWNN model was utilized as the signal processing tool, including the Taylor series components in the input nodes of the neural network. The number of the intermediate layer nodes in the neural network model, containing the training and simulation stage, was evaluated and optimized. Discussions on the influences of the gradient descent with adaptive learning rate algorithm and the Levenberg-Marquardt algorithm, both for determining the network weights, on prediction errors were provided. During the simulation stage, different earthquake excitations were tested with the optimized settings acquired from the training stage to find out which of the algorithms would result in the smallest error, to determine a proper simulation model.

TMD parameters optimization in different-length suspension bridges using OTLBO algorithm under near and far-field ground motions

  • Alizadeh, Hamed;Lavasani, H.H.
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.625-635
    • /
    • 2020
  • Suspension bridges have the extended in plan configuration which makes them prone to dynamic events like earthquake. The longer span lead to more flexibility and slender of them. So, control systems seem to be essential in order to protect them against ground motion excitation. Tuned mass damper or in brief TMD is a passive control system that its efficiency is practically proven. Moreover, its parameters i.e. mass ratio, tuning frequency and damping ratio can be optimized in a manner providing the best performance. Meta-heuristic optimization algorithm is a powerful tool to gain this aim. In this study, TMD parameters are optimized in different-length suspension bridges in three distinct cases including 3, 4 and 5 TMDs by observer-teacher-learner based algorithm under a complete set of ground motions formed from both near-field and far-field instances. The Vincent Thomas, Tacoma Narrows and Golden Gate suspension bridges are selected for case studies as short, mean and long span ones, respectively. The results indicate that All cases of used TMDs result in response reduction and case 4TMD can be more suitable for bridges in near and far-field conditions.

Estimation of fundamental period of reinforced concrete shear wall buildings using self organization feature map

  • Nikoo, Mehdi;Hadzima-Nyarko, Marijana;Khademi, Faezehossadat;Mohasseb, Sassan
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.237-249
    • /
    • 2017
  • The Self-Organization Feature Map as an unsupervised network is very widely used these days in engineering science. The applied network in this paper is the Self Organization Feature Map with constant weights which includes Kohonen Network. In this research, Reinforced Concrete Shear Wall buildings with different stories and heights are analyzed and a database consisting of measured fundamental periods and characteristics of 78 RC SW buildings is created. The input parameters of these buildings include number of stories, height, length, width, whereas the output parameter is the fundamental period. In addition, using Genetic Algorithm, the structure of the Self-Organization Feature Map algorithm is optimized with respect to the numbers of layers, numbers of nodes in hidden layers, type of transfer function and learning. Evaluation of the SOFM model was performed by comparing the obtained values to the measured values and values calculated by expressions given in building codes. Results show that the Self-Organization Feature Map, which is optimized by using Genetic Algorithm, has a higher capacity, flexibility and accuracy in predicting the fundamental period.

GA-optimized Support Vector Regression for an Improved Emotional State Estimation Model

  • Ahn, Hyunchul;Kim, Seongjin;Kim, Jae Kyeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권6호
    • /
    • pp.2056-2069
    • /
    • 2014
  • In order to implement interactive and personalized Web services properly, it is necessary to understand the tangible and intangible responses of the users and to recognize their emotional states. Recently, some studies have attempted to build emotional state estimation models based on facial expressions. Most of these studies have applied multiple regression analysis (MRA), artificial neural network (ANN), and support vector regression (SVR) as the prediction algorithm, but the prediction accuracies have been relatively low. In order to improve the prediction performance of the emotion prediction model, we propose a novel SVR model that is optimized using a genetic algorithm (GA). Our proposed algorithm-GASVR-is designed to optimize the kernel parameters and the feature subsets of SVRs in order to predict the levels of two aspects-valence and arousal-of the emotions of the users. In order to validate the usefulness of GASVR, we collected a real-world data set of facial responses and emotional states via a survey. We applied GASVR and other algorithms including MRA, ANN, and conventional SVR to the data set. Finally, we found that GASVR outperformed all of the comparative algorithms in the prediction of the valence and arousal levels.

반복적 보정에 의한 파랑정보 추출 기법 (Wave information retrieval algorithm based on iterative refinement)

  • 김진수;이병길
    • 한국산업정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.7-15
    • /
    • 2016
  • 해양의 파랑 파라미터는 해상 교통의 운행과 항해에 있어 안전성과 더불어 효율성을 위해 매우 중요하다. 본 논문에서는 X-대역의 해양 레이더를 이용하여 해류 속도, 파랑 파라미터와 같은 해상의 표현정보를 수집하는데 효율적인 알고리즘을 개발한다. 특히, 제안된 방식은 고정된 제어 방식을 사용하는 것 대신에 반복적인 보정 과정을 채택함으로써, 최적화된 해류 속도를 효과적으로 계산할 뿐만 아니라, 최적화된 방식으로 비용함수를 도입하도록 설계된다. 실험을 통해서 제안한 알고리즘은 기존의 알고리즘에 비해서 파랑 정보를 추출하는데 매우 효과적임을 보인다.