• 제목/요약/키워드: Optimized Route

검색결과 104건 처리시간 0.023초

클러스터링을 이용한 주기적 차량운행경로 문제 해법 (A Clustering Based Approach for Periodic Vehicle Routing Problems)

  • 김병인;김성배
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.52-58
    • /
    • 2005
  • In this paper, we address a real-world periodic vehicle routing problem with time windows (PVRPTW). In addition to the general requirements of single-day vehicle routing problem, each stop has required number of visits within a cycle period in PVRPTW. Thus, we need to determine optimized days of visit for each stop with consideration of the cycle-period days together. The problem also requires consistent vehicle assignment to the stops. We developed a clustering based 3-phase approach for this problem: 1) stop-route assignment, 2) stop-day assignment, and 3) stop sequencing within a single-day route. Using the approach, we could reduce the number of routes and improve the routing efficiency for several real-world problems.

  • PDF

Cross-Coupling Reaction of 2-halo1-methyl-1H-imidazo[4,5-b]pyridine Offers a New Synthetic Route to Mutagenic Heterocyclic Amine-PHIP and DMIP

  • Sajith, Ayyiliath M.;Muralidharan, Arayambath;Karuvalam, Ranjith P.;Haridas, Karickal R.
    • 대한화학회지
    • /
    • 제57권3호
    • /
    • pp.361-364
    • /
    • 2013
  • A modified synthetic approach to the synthesis of heterocyclic food mutagens, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PHIP) and 2-amino-1,6-dimethylimidazo[4,5-b]pyridine (DMIP) is reported. This route highlights an optimized palladium catalysed Buchwald cross-coupling of 2-halo-1-methyl-imidazo[4,5-b]pyridine with benzophenoneimine followed by acidic hydrolysis to yield compound 7. Using finely tailored conditions, Suzuki cross-coupling reactions with highly efficient catalytic systems were performed as the final step on 8 to introduce the aryl group and methyl group on the heterocyclic core.

무인비행체의 유사시 대안 경로 선택을 위한 DEVS 기반 디지털 트윈 시뮬레이션 환경 모델링 (DEVS-based Digital Twin Simulation Environment Modeling for Alternative Route Selection in Emergency Situations of Unnamed Aerial Vehicles)

  • 권보승;정상원;노영단;이종식;한영신
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1007-1021
    • /
    • 2022
  • Autonomous driving of unmanned aerial vehicles may have to pay expensive cost to create and switch new routes if unexpected obstacles exist or local map updates occured by the control system due to incorrect route information. Integrating digital twins into the path-following process requires more computing resources to quickly switch the wrong path to an alternative path, but it can quickly update the path during flight. In this study, we design a DEVS-based simulation environment which can modify optimized paths through short-term simulation of multi-virtual UAVs for applying digital twin concepts to path follow. Through simulation, we confirmed the possibility of increasing the mission stability of UAV.

Aircraft delivery vehicle with fuzzy time window for improving search algorithm

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Advances in aircraft and spacecraft science
    • /
    • 제10권5호
    • /
    • pp.393-418
    • /
    • 2023
  • Drones are increasingly used in logistics delivery due to their low cost, high-speed and straight-line flight. Considering the small cargo capacity, limited endurance and other factors, this paper optimized the pickup and delivery vehicle routing problem with time windows in the mode of "truck+drone". A mixed integer programming model with the objective of minimizing transportation cost was proposed and an improved adaptive large neighborhood search algorithm is designed to solve the problem. In this algorithm, the performance of the algorithm is improved by designing various efficient destroy operators and repair operators based on the characteristics of the model and introducing a simulated annealing strategy to avoid falling into local optimum solutions. The effectiveness of the model and the algorithm is verified through the numerical experiments, and the impact of the "truck+drone" on the route cost is analyzed, the result of this study provides a decision basis for the route planning of "truck+drone" mode delivery.

RSU 통신 및 딥러닝 기반 최적화 차량 라우팅 시스템 설계 (A design of Optimized Vehicle Routing System(OVRS) based on RSU communication and deep learning)

  • 손수락;이병관;심손권;정이나
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.129-137
    • /
    • 2020
  • 현재 자율주행 차량 시장은 3레벨 자율주행 차량의 상용화를 넘어 4레벨 자율주행 차량을 연구, 개발하고 있다. 4레벨 자율주행 차량에서 가장 주목되는 부분은 차량의 안정성이다. 3레벨과 다르게 4레벨의 자율주행 차량은 긴급상황을 차량이 직접 대처해야 하기 때문이다. 본 논문에서는 긴급상황에서의 즉각적인 반응보다는 차량의 목적지가 정해진 순간 사고 가능성이 가장 낮은 경로를 결정하는 Optimized Vehicle Routing System (OVRS)을 제안한다. OVRS는 RSU 통신으로 수집한 도로와 주변 차량 정보를 분석하여 도로의 위험성을 예측하여 주행 중인 차량이 더 안전하고 빠른 길로 주행할 수 있도록 경로를 설정한다. OVRS는 네트워크 라우팅 방식처럼 도로에 있는 RSU를 통하여 도로 상황에 따른 경로 안내를 실행하기 때문에 차량의 안정성을 더욱 높일 수 있다. 실험 결과, OVRS모듈 중 하나인 ASICM의 RPNN은 CNN보다 약 17%, LSTM보다 약 40% 더 좋은 연산 시간을 보였다. 그러나 해당 연구가 PC를 이용한 가상환경에서 실행되었기 때문에, VPDM의 사고 가능성을 실제로 검증하지 못했다. 따라서 향후 사고 데이터 수집으로 인한 VPDM의 정확도 높은 실험과 실제 차량 및 RSU에서 실제 도로를 대상으로 한 실험이 진행되어야 한다.

상황인식 기반 지능형 최적 경로계획 (Intelligent Optimal Route Planning Based on Context Awareness)

  • 이현정;장용식
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

Development of the Order Picking Algorithm for Warehouse Management System in SCM Environment

  • 조종남;남호기;박상민;오성환
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2003년도 추계학술대회
    • /
    • pp.129-142
    • /
    • 2003
  • The SCM is that Supply Chain Network is Promptly and Voluntarily Optimized in Unstable Market Change Environment. The Cash flow Efficiency of Hole Supply Chain Network is Improved by Changing the Information and Changing the Foundation of Business Processes. The Role of WMS has been Changing Importantly with the Introduction of SCM. WMS Needed to Change to the Information Center in Order to Change Information in Real Time and the WMS of Information Storing in Order to Support an Idea Decision. This Development was Defined about the Importance of WMS in SCM Environment. The Criterion of Valuation is Normally Measured Time between Taking a Order Receive and Bringing the Items to Customer. The Decreasing Move Time of Order Picker in Warehouse is Directly Influence to the Job Execution. So, this Research is Defined about the Optimized Route of Order Picker and Suggests Algorithm. To do this, Past Algorithm is Studied. It's Easy to Introduce and this Study is Looking for Method about the Noticing of Order Picker. The Algorithm will Improve to be Adapt to Standard Process System.

  • PDF

Beckmann Rearrangements of 1-Indanone Oxime Derivatives Using Aluminum Chloride and Mechanistic Considerations

  • 이병세;추소영;이인영;이본수;송중의;지대윤
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권9호
    • /
    • pp.860-866
    • /
    • 2000
  • Hydrocarbostyril, which is a key intermediate in our new synthetic route to 6-nitroquipazine, can be prepared from 1-indanone oxime by Beckmann rearrangement. We have optimized the reaction by using a Lewis acid, aluminum chloride,in the yield of 91% instead of common acids such as polyphosphoric acid,and sulfuric acid used in conventional Beckmann rearrangement (20% in the literature, 10% in our experiment).The optimized condition is established by usingthree equivalents of aluminum chloride in CH2Cl2 at -40 $^{\circ}C$ - room tempera-turefor 40 min. We have applied this condition to other 1-indanone derivatives, such as 4-methyl-, 4-methoxy-, 4-nitro and 6-nitro-1-indanones. The mechanism ofthis BR has been proposed on the basis of the effect of tem-perature and substituenton product ratio, with the aid of PM3 calculation for a model system.

A Study on Intelligence Navigation for Autonomous Mobile Robot Using Fuzzy Logic Control

  • Huh, Dei-Jeung;Lee, Woo-Young;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.138.5-138
    • /
    • 2001
  • The autonomous robot has the ability of obstacle avoidance and target tracking with some manufactured information. In this paper, it is shown that autonomous mobile robot can avoid fixed obstacles using the map made before and the fuzzy controller is adopted with the global path planing and the local path planing when the robot navigates. With that map sensor, information will be used when an autonomous robot navigates. This paper proves that robot can navigate through optimized route and keep the stable condition.

  • PDF

퍼지를 이용한 자율 이동 로봇의 이동 경로 추종 및 고속 정밀 제어 (Moving Path following and High Speed Precision Control of Autonomous Mobile Robot Using Fuzzy)

  • 이원호;이형우;김상헌;정재영;노태정
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.907-913
    • /
    • 2004
  • 일반적인 이동 로봇의 주된 관심은 경로 생성과 생성된 경로 추종에 있다. 그러나 일부 고속의 이동성이 필요로 하는 로봇의 경우 동역학적 제한 조건이 존재하며, 이러한 제한 조건 내에서 원하는 움직임에 대한 제어가 요구된다. 된 논문에서 환경 지도를 가지고 있지 않은 상태, 즉 미지의 환경에서 이동 로봇의 경로 추종에 있어서 빠른 이동시에 발생할 수 있는 이동 로봇의 미끄러짐이나 전복 현상을 막기 위해 이동 로봇의 동역학적 제한 조건을 퍼지 논리를 이용하여 기준 속도를 변화시켜 안전하고 빠는 경로 추종 성능을 얻고자 하였다. 특히, 라인 추종 이동 로봇을 모델링하여 실시간으로 변화하는 목표점에 대한 추종 제어기를 설계하고 퍼지 최적 속도 제한 제어기를 통해 연속적으로 변화하는 라인에 대해서 지능적으로 로봇의 속도를 제한하여 안정적인 추종 성능을 발휘함을 확인하였다.