• Title/Summary/Keyword: Optimization.

Search Result 21,739, Processing Time 0.052 seconds

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Characteristic Study of Small-sized and Planer Resonator for Mobile Device in Magnetic Wireless Power Transfer (소형 모바일 기기용 공진형 무선전력전송 시스템의 공진기 평면화 및 소형화에 따른 특성 연구)

  • Lee, Hoon-Hee;Jung, Chang-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.16-21
    • /
    • 2017
  • In this paper, a Small-sized and planer resonator design of Magnetic Resonance - Wireless Power Transfer(MR-WPT) were proposed for practical applications of mobile devices, such as a laptop, a smart-phone and a tablet pc. The proposed MR-WPT system were based on four coil MR-WPT and designed as a transmitter part (Tx) and a receiver part (Rx) both are the same shape with the same loop and resonator. There are four different spiral coil type of resonators with variable of line length, width, gap and turns in $50mm{\times}50mm$ size. The both of top and bottom side of substrate(acrylic; ${\varepsilon}_r=2.56$, tan ${\delta}=0.008$) ere used to generate high inductance and capacitance in limited small volume. Loops were designed on the same plane of resonator to reduce their volume, and there are three different size. The proposed MR-WPT system were fabricated with two acrylic substrate plane of Tx and Rx each, the Rx and Tx loops and resonators were fabricated of copper sheets. There are 12 combinations of 3 loops and 4 resonators, each combination were measured to calculate transfer efficiency and resonance frequency in transfer distance from 1cm to 5cm. The measured results, the highest transfer efficiency was about 70%, and average transfer efficiency was 40%, on the resonance frequency was about 6.78 MHz, which is standard band by A4WP. We proposed small-sized and planer resonator of MR-WPT and showed possibility of mobile applications for small devices.

Optimization of Analytical Methods for Octacosanol in Related Health-functional Foods with GC-MS (GC-MS를 이용한 건강기능식품 중 옥타코사놀 분석법 개발 연구)

  • Lee, Jin Hee;Oh, Mi Hyune;Lee, Kyung Jin;Kim, Yang Sun;Keum, Eun Hee;Park, Ji Eun;Cho, Mee Hyun;Seong, Min Hye;Kim, Sang A;Kim, Mee hye
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.266-271
    • /
    • 2018
  • The Ministry of Food and Drug Safety (MFDS) is amending its test methods for health-functional foods (dietary food supplements) to establish regulatory standards and specifications in Korea. In this regard, we continue our research on developing analytical methods for the items. Octacosanol is the major component of polycosanol and is a high-molecular-mass primary fatty alcohol, obtained from sugar cane wax. Previous researchers have shown that octacosanol can lower cholesterol and has antiaggregatory properties, cytoprotective uses, and ergogenic properties for human health. Recently, octacosanol products have been actively introduced into the domestic market because of their functional biological activity. We have developed a sensitive and selective test method for octacosanol that the TMS derivatives by means of gas-chromatographic-tandem mass spectrometry (GC-MS). The trimethylsilyl ether derivative of the target analyte showed excellent chromatographic properties. The procedure was validated in the range of $12.5{\sim}200{\mu}g/L$. Standard calibration curves presented linearity with the correlation coefficient ($r^2$) > 0.999, and the limits of detection (LOD) and limits of quantitation (LOQ) were $4.5{\mu}g/L$ and $13.8{\mu}g/L$, respectively. The high recoveries (92.5 to 108.8%) and precision (1.8 to 2.4%) obtained are in accordance with the established validation criteria. Our research can provide scientific evidence to amend the octacosanol test method for the Health-Functional Food Code.

Optimization of fractionation efficiency (FE) and throughput (TP) in a large scale splitter less full-feed depletion SPLITT fractionation (Large scale FFD-SF) (대용량 splitter less full-feed depletion SPLITT 분획법 (Large scale FFD-SF)에서의 분획효율(FE)및 시료처리량(TP)의 최적화)

  • Eum, Chul Hun;Noh, Ahrahm;Choi, Jaeyeong;Yoo, Yeongsuk;Kim, Woon Jung;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.453-459
    • /
    • 2015
  • Split-flow thin cell fractionation (SPLITT fractionation, SF) is a particle separation technique that allows continuous (and thus a preparative scale) separation into two subpopulations based on the particle size or the density. In SF, there are two basic performance parameters. One is the throughput (TP), which was defined as the amount of sample that can be processed in a unit time period. Another is the fractionation efficiency (FE), which was defined as the number % of particles that have the size predicted by theory. Full-feed depletion mode (FFD-SF) have only one inlet for the sample feed, and the channel is equipped with a flow stream splitter only at the outlet in SF mode. In conventional FFD-mode, it was difficult to extend channel due to splitter in channel. So, we use large scale splitter-less FFD-SF to increase TP from increase channel scale. In this study, a FFD-SF channel was developed for a large-scale fractionation, which has no flow stream splitters (‘splitter less’), and then was tested for optimum TP and FE by varying the sample concentration and the flow rates at the inlet and outlet of the channel. Polyurethane (PU) latex beads having two different size distribution (about 3~7 µm, and about 2~30 µm) were used for the test. The sample concentration was varied from 0.2 to 0.8% (wt/vol). The channel flow rate was varied from 70, 100, 120 and 160 mL/min. The fractionated particles were monitored by optical microscopy (OM). The sample recovery was determined by collecting the particles on a 0.1 µm membrane filter. Accumulation of relatively large micron sized particles in channel could be prevented by feeding carrier liquid. It was found that, in order to achieve effective TP, the concentration of sample should be at higher than 0.4%.

Optimization of Total Arc Degree for Stereotactic Radiotherapy by Using Integral Biologically Effective Dose and Irradiated Volume (정위방사선치료 시 적분 생물학적 유효선량 및 방사선조사용적을 이용한 Total Arc Degree의 최적화)

  • Lim Do Hoon;Lee Myung Za;Chun Ha Chung;Kim Dae Yong
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.199-204
    • /
    • 2001
  • Purpoe : To find the optimal values of total arc degree to protect the normal brain tissue from high dose radiation in stereotactic radiotherapy planning. Methods and Materials : With Xknife-3 planning system & 4 MV linear accelerator, the authors planned under various values of parameters. One isocenter, 12, 20, 30, 40, 50, and 60 mm of collimator diameters, $100^{\circ},\;200^{\circ},\;300^{\circ},\;400^{\circ}C,\;500^{\circ},\;600^{\circ}$ or total arc degrees, and $30^{\circ}\;or\;45^{\circ}$ or arc intervals were used. After the completion of planning, the plans were compared each other using $V_{50}$ (the volume of normal brain that is delivered high dose radiation) and integral biologically effective dose. Results : At $30^{\circ}$ of arc interval, the values of $V_{50}$ had the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 arc interval, up to $400^{\circ}$ of total arc degree, the values of $ V_{50}$ decreased with the increase of total arc degree, but at $500^{\circ}\;and\;600^{\circ}$ of total arc degrees, the values increased. At $30^{\circ}$ of arc interval, integral biologically effective dose showed the decreased pattern with the increase of total arc degree in any collimator diameter. At $45^{\circ}$ arc interval with less than 40 mm collimator diameter, the integral biologically effective dose decreased with the increase of total arc degree, but with n and n mm or collimator diameters, up to $400^{\circ}$ or total arc degree, integral biologically effective dose decreased with the increase of total arc degree, but at $500^{\circ}\;and\;600^{\circ}$ of total arc degrees, the values increased. Conclusion : In the stereotactic radiotherapy planning for brain lesions, planning with $400^{\circ}$ of total arc degree is optimal. Especially, when the larger collimator more than 50 mm diameter should be used, the uses of $500^{\circ}\;and\;600^{\circ}$ of total arc degrees make the increase of$V_{50}$ and integral biologically effective dose. Therefore stereotactic radiotherapy planning using $400^{\circ}$ of total arc degree can increase the therapeutic ratio and produce the effective outcome in the management of personal and mechanical sources in radiotherapy department.

  • PDF

Applications of Fuzzy Theory on The Location Decision of Logistics Facilities (퍼지이론을 이용한 물류단지 입지 및 규모결정에 관한 연구)

  • 이승재;정창무;이헌주
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.75-85
    • /
    • 2000
  • In existing models in optimization, the crisp data improve has been used in the objective or constraints to derive the optimal solution, Besides, the subjective environments are eliminated because the complex and uncertain circumstances were regarded as Probable ambiguity, In other words those optimal solutions in the existing models could be the complete satisfactory solutions to the objective functions in the Process of application for industrial engineering methods to minimize risks of decision-making. As a result of those, decision-makers in location Problems couldn't face appropriately with the variation of demand as well as other variables and couldn't Provide the chance of wide selection because of the insufficient information. So under the circumstance. it has been to develop the model for the location and size decision problems of logistics facility in the use of the fuzzy theory in the intention of making the most reasonable decision in the Point of subjective view under ambiguous circumstances, in the foundation of the existing decision-making problems which must satisfy the constraints to optimize the objective function in strictly given conditions in this study. Introducing the Process used in this study after the establishment of a general mixed integer Programming(MIP) model based upon the result of existing studies to decide the location and size simultaneously, a fuzzy mixed integer Programming(FMIP) model has been developed in the use of fuzzy theory. And the general linear Programming software, LINDO 6.01 has been used to simulate, to evaluate the developed model with the examples and to judge of the appropriateness and adaptability of the model(FMIP) in the real world.

  • PDF

Effect of different light sources and ventilation on in vitro shoot growth and rooting of a rare and endangered species, Tsuru-rindo(Tripterospermum japonicum) (희귀 및 멸종위기 식물 덩굴용담의 기내생장에 미치는 광질 및 환기효과)

  • Moon, Heung-Kyu;Park, So-Young
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.215-221
    • /
    • 2008
  • Effects of light generated by LEDs on shoot growth and rooting of Tsuru-rindo(Tripterospermum japonicum) were evaluated. Apical shoots(one or two node with 3-4 leaves) were cultured on MS basal medium with 3% sucrose and maintained for four weeks under five different light qualities: fluorescent lamp(F), 100% red LED(R), 70% red LED+30% blue LED(R7B3), 50% red LED+50% blue(R5B5), or 100% blue LED(B). Rooting was promoted by both red light and fluorescent lamp, and the effect was further promoted under the ventilation. Red light enhanced shoot node elongation, whereas blue light appeared to suppress it. Growth of shoots and leaves were enhanced under the ventilation irrespective of the different light qualities. Under the ventilated condition, total fresh weight of plants was highest in R7B3 LED as 257.7 mg per plant. Dry matters, which are used for index of plant growth, were lowest under red light, whereas it was highest under blue light. The dry matter was inclined to getting higher by ascending the ratio of blue light and red light. Total chlorophyll content was highest in both R7B3 LED and R5B5 LED under ventilation as 29.5 and 31.2, respectively. Above results suggest that light quality optimization could be an important factor to foster in vitro growth of the species. Ventilation treatment appeared to be another important factor to induce normal shoot growth and rooting.

Optimization of Growth Medium and Poly-$\beta$-hydroxybutyric Acid Production from Methanol in Methylobacterium organophilum (메탄올로부터 Methylobacterium organophilum에 의한 Poly-$\beta$-hydroxybutyric Acid의 생산과 배지성분의 최적화)

  • Choi, Joon-H;Kim, Jung H.;M. Daniel;J.M. Lebeault
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.392-396
    • /
    • 1989
  • Methylobacterium organophilum, a facultative methylotroph was cultivated on a methanol as a sole carbon and energy source. The cell growth was affected by the various components of minimal synthetic medium and the medium composition was optimized with 0.5% (v/v) methanol at pH 6.8 and at 3$0^{\circ}C$. The maximum specific growth rate of M. organophilum was achieved to 0.26 hr$^{-1}$ in the optimized medium which has following composition: Methanol, 0.5% (v/v):(NH$_4$)$_2$SO$_4$, 1.0g/l:KH$_2$PO$_4$, 2.13g/l:KH$_2$PO$_4$, 1.305g/ι:MgSO$_4$.7$H_2O$. 45g/l and trace elements (CaCl$_2$.2$H_2O$, 3.3mg:FeSO$_4$.7$H_2O$, 1.3mg:MnSO$_4$.4$H_2O$, 130$\mu\textrm{g}$:ZnSO$_4$.5$H_2O$, 40$\mu\textrm{g}$:Na$_2$MoO$_4$.2$H_2O$, 40$\mu\textrm{g}$:CoCl$_2$.6$H_2O$, 40$\mu\textrm{g}$:H$_3$BO$_3$, 30$\mu\textrm{g}$ per liter). By the limitation of nitrogen and deficiency of Mn$^{+2}$ or Fe$^{+2}$, the cell growth was significantly repressed. Methanol greatly repressed the cell growth and the complete inhibition was observed at concentration above 4% (v/v). In order to overcome the methanol inhibition and to prevent the methanol limitation, intermittent feeding of methanol was conducted by a D.O.-stat technique. PHB production by M. organophilum was stimulated by deficiency of nutrients such as NH$_{4}^{+}$, SO$_{4}^{-2}$, $Mg^{+2}$, $K^{+}$, or PO$_{4}^{-3}$ in the medium. The maximum PHB content was obtained as 58% of dry cell weight under deficiency of potassium ion in the optimized synthetic medium.

  • PDF

Optimization of Genetic Transformation Conditions for Korean Soybean Cultivars (국내 콩(Glycine max) 품종 형질전환 초기조건 확립)

  • Lee Ki-Jung;Seo Jen-Kyung;Lee Hye-Young;Jeon Eun-Hee;Shin Sang-Hyun;Lee Jai-Heon;Kim Doh-Hoon;Ko Jong-Min;Hahn Won Young;Baek In-Youl;Oh Boung-Jun;Chung Young-Soo
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.289-296
    • /
    • 2006
  • In order to establish highly efficient gene transfer condition at early stage of soybean transformation, various experiments were performed and compared their efficiencies by transient GUS analysis; those conditions are genotype determination of Korean soybean cultivars for amenability to Agro-infection, appropriate agar and selective agent concentration, orientation of explant placement, hormone pre-culture, and liquid selection condition. In the genotype screen of Korean soybean varieties, 14 amenable genotypes were selected. For efficient Agrobacterium washing, cefotaxime was chosen and hygromycin at the concentration of 10 and 15 ppm was used as selection agent in the media. Agar concentration was slightly better in 0.6% and 0.8% for both shoot and callus formation, and explant placement with adaxial side down showed high frequency of GUS expression. For wounding treatment, oriental needle was efficient than scalpel for shoot formation and gene transfer. To increase the frequency of gene transfer, hormone pre-treatment was applied. BA at the concentration of 5 and 10 ppm resulted in better survival at the late stage of selection in shoot elongation media. Selection in liquid media after hormone pre-treatment seemed to be effective to remove the escaped non-transformants at early stage of procedure. Considering the results obtained, Eunhakong could be the first choice as a material for soybean transformation among Korean soybean genotypes.

Optimization of Microwave-Assisted Process for Extraction of Effective Components from Mosla dinthera M. (마이크로파 추출공정에 의한 쥐깨풀 유용성분의 추출조건 최적화)

  • Lee Eun-Jin;Kwon Young-Ju;Noh Jung-Eun;Lee Jeong-Eun;Lee Sung-Ho;Kim Jae-Keun;Kim Kwang-Soo;Choi Yong-Hee;Kwon Joong-Ho
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.617-623
    • /
    • 2005
  • Response surface methodology (RSM) was applied to microwave-assisted process (MAP) extraction for effective components from Mosla dianthera M. Microwave power (2,450 MHz, 0-160 W) and extraction time (1-5 min) were used as independent variables ($X_i$) for central composite design to yield 10 different extraction conditions. Optimum conditions were predicted for dependent variables of $75\%$ ethanol extracts, such as total yield($Y_1$), total phenolics($Y_2$), total flavonoids($Y_3$), and electron donation ability($Y_4$, EDA). Determination coefficients ($R^2$) of regression equations for dependent variables ranged from 0.8397 to 0.9801, and microwave power was observed to be more influential than extraction time in MAP. The maximal values of each dependent variable predicted at different extraction conditions of microwave power (W) and extraction time (min) were as follows; $6.76\%$ of total yield at 142.00 W and 4.36 min, 78.68 mg/g of total phenolics at 136.78 W and 4.40 min, 6.75 mg/g of total flavonoids at 159,69 W and 3.17 min, and $49.81\%$ of EDA at 133.87 W and 4.47 min, respectively. The superimposed contour maps for maximizing dependent variables illustrated the MAP conditions of 79 to 113 W in power and of 2.73 to 3.84 min in extraction time.