• 제목/요약/키워드: Optimization of mat design

Search Result 8, Processing Time 0.022 seconds

Deposition Optimization and Property Characterization of Copper-Oxide Thin Films Prepared by Reactive Sputtering

  • You, Yil-Hwan;Bae, Seung-Muk;Kim, Young-Hwan;Hwang, Jinha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.27-31
    • /
    • 2013
  • Copper-oxide (CuO) thin films were prepared by reactive sputtering of Cu onto Si wafers and characterized using a statistical design of experiments approach. The most significant factor in controlling the electrical resistivity and deposition rate was determined to be the $O_2$ fraction. The deposited CuO thin films were characterized in terms of their physical and chemical properties, using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), X-ray diffraction (XRD), and 4-point resistance measurements. The deposited copper thin films were characterized by XPS and XRD analyses to consist of $Cu^{2+}$. The CuO thin films of highest resistivity exhibited superior rectifying responses with regard to n-type Si wafers, with a current ratio of $3.8{\times}10^3$. These superior responses are believed to be associated with the formation of a charge-depletion region originating from the p-type CuO and n-type Si materials.

Structural Strength Assessment and Optimization for 20 Feet Class Power Boat (20피트급 파워보트의 구조강도 평가 및 최적화)

  • Yum, Jae-Seon;Yoo, Jaehoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.108-114
    • /
    • 2016
  • Recently, there has been a growing interest in marine leisure sports and high speed power boat for fishing. The prototype of 20 feet class power boat was developed and authors are joined in this government-led project. The research was performed to evaluate the optimal structure and design of the structural strength necessary to ensure the structural safety of the power boat. A new material ROCICORE fiber added to the mat and roving was adopted for high-power tenacity. ANSYS Workbench has been used to make the structural model, evaluate the strength and optimize the structural design. The response of the structure to quasi-static slamming loads according to the rules and regulations of ISO 12215-5, Lloyd’s Register of Shipping and Korean Register has been implemented and studied. An optimization study for the structural response is carried out by changing the plate thickness and section modulus of stiffeners. The power boat structure derived fuel efficiency is optimized by performing the best possible structural design to minimize the hull weight.

Case Study on Mega Foundations of Domestic and Foreign Super High-Rise Buildings (국내외 초고층 건축물의 대단면 매트기초 시공사례와 분석)

  • Park, Young-Seok;Lee, Hai-Chool;Kim, Kyoung-Min;Cho, Chang-Shik;Rhim, Hong-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.17-19
    • /
    • 2010
  • This paper describes the possibility of the raft thickness reduction for mega foundations system of super high-rise buildings through a case study on domestic and foreign super high-rise buildings. In case of super high-rise buildings, the size of foundations, especially raft becomes wider and deeper because of heavy upper load. It is difficult to pour concrete of this kind of mega foundation, and cracks by hydration heat could happen. Therefore, there are several ways to reduce the raft thickness of mega foundations. Piled-raft could be the one because moment and shear load that the raft subjects on by soil reaction are lower. The effect of the piled-raft foundation on the raft thickness reduction could be confirmed by comparison of super high-rise buildings with pile, piled-raft and mat foundation. Furthermore, it was showed that the raft thickness could be more reduced by locating piles right under the vertical members of super structures.

  • PDF

Impedance-Based Characterization of 2-Dimenisonal Conduction Transports in the LaAlO3/SrxCa1-xTiO3/SrTiO3 systems

  • Choi, Yoo-Jin;Park, Da-Hee;Kim, Eui-Hyun;Park, Chan-Rok;Kwon, Kyeong-Woo;Moon, Seon-Young;Baek, Seung-Hyub;Kim, Jin-Sang;Hwang, Jinha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.171.2-171.2
    • /
    • 2016
  • The 2-dimensiona electron gas (2DEG) layers have opened tremendous interests in the heterooxide interfaces formed between two insulating materials, especially between LaAlO3 and $SrTiO_3$. The 2DEG layers exhibit extremely high mobility and carrier concentrations along with metallic transport phenomena unlike the constituent oxide materials, i.e., $LaAlO_3$ and $SrTiO_3$. The current work inserted artificially the interfacial layer, $Sr_xCa_{1-x}TiO_3$ between $LaAlO_3$ and $SrTiO_3$, with the aim to controlling the 2-dimensional transports. The insertion of the additional materials affect significantly their corresponding electrical transports. Such features have been probed using DC and AC-based characterizations. In particular, impedance spectroscopy was employed as an AC-based characterization tool. Frequency-dependent impedance spectroscopy have been widely applied to a number of electroceramic materials, such as varistors, MLCCs, solid electrolytes, etc. Impedance spectroscopy provides powerful information on the materials system: i) the simultaneous measurement of conductivity and dielectric constants, ii) systematic identification of electrical origins among bulk-, grain boundary-, and electrode-based responses, and iii) the numerical estimation on the uniformity of the electrical origins. Impedance spectroscopy was applied to the $LaAlO_3/Sr_xCa_{1-x}TiO_3/SrTiO_3$ system, in order to understand the 2-dimensional transports in terms of the interfacial design concepts. The 2-dimensional conduction behavior system is analyzed with special emphasis on the underlying mechanisms. Such approach is discussed towards rational optimization of the 2-dimensional nanoelectronic devices.

  • PDF

Traditional Software Development for WLAN Propagation Model

  • Ibrahim Anwar Hassan;Ismail Mahamod;Jumari Kasmiran;Kiong Tiong Sieh
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.123-128
    • /
    • 2007
  • SPWPM traditional software development is surveyed and essential problems are investigated on the basis of system wireless link considerations. This paper presents the current state software planning tools for wireless LAN link optimization. The software directory is based on combination of MatLab and MapInfo software and measurement which gives the best grouping parameters to build up the software development. Among the requirements assumed, the WLAN site selections must be Line-of-sight (LOS) or near line of sight (NLOS) field strength prediction for either point to point or point to multi points. The results obtainable the out put of the program include two-dimensional (2D) and three dimensional (3D) plots for creating the link; design parameters through GUI representing the height and location for each antenna is depending on K-factor of the area and transmit antenna location.

Gain Scheduled Control for Disturbance Attenuation of Systems with Bounded Control Input - Application to Stabilization Control (제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이득 스케쥴 제어 - 안정화 제어 응용)

  • Kang Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.88-95
    • /
    • 2006
  • In this paper, the gain-scheduled control design proposed in the previous paper has been applied to a target tracking system. In such system, it is needed to attenuate disturbance effectively as long as control input satisfies the given constraint on its magnitude. The scheduled gains are derived in the framework of linear matrix inequality(LMI) optimization by means of the MatLab toolbox. Its effectiveness is verified along with the simulation results compared with the conventional optimum constant gain and the scheduled gain control with constant Q matrix cases.

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Application (제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 적용)

  • Kang, Min-Sig;Yoon, Woo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.65-73
    • /
    • 2007
  • In this paper, the gain scheduled state feedback and disturbance feedforward control design proposed in the previous paper has been applied to a simple matching system and a turret stabilization system. In such systems, it is needed to attenuate disturbance response effectively as long as control input satisfies the given constraint on its magnitude. The scheduled control gains are derived in the framework of linear matrix inequality(LMI) optimization by means of the MatLab toolbox. Its effectiveness is verified along with the simulation results compared with the conventional optimum constant gain control and the scheduled state feedback control cases.

Parameter estimation of four-parameter viscoelastic Burger model by inverse analysis: case studies of four oil-refineries

  • Dey, Arindam;Basudhar, Prabir Kr.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.211-228
    • /
    • 2012
  • This paper reports the development of a generalized inverse analysis formulation for the parameter estimation of four-parameter Burger model. The analysis is carried out by formulating the problem as a mathematical programming formulation in terms of identification of the design vector, the objective function and the design constraints. Thereafter, the formulated constrained nonlinear multivariable problem is solved with the aid of fmincon: an in-built constrained optimization solver module available in MatLab. In order to gain experience, a synthetic case-study is considered wherein key issues such as the determination and setting up of variable bounds, global optimality of the solution and minimum number of data-points required for prediction of parameters is addressed. The results reveal that the developed technique is quite efficient in predicting the model parameters. The best result is obtained when the design variables are subjected to a lower bound without any upper bound. Global optimality of the solution is achieved using the developed technique. A minimum of 4-5 randomly selected data-points are required to achieve the optimal solution. The above technique has also been adopted for real-time settlement of four oil refineries with encouraging results.