• Title/Summary/Keyword: Optimization of Operation Conditions

Search Result 220, Processing Time 0.031 seconds

Thermal Analysis of 3D package using TSV Interposer (TSV 인터포저 기술을 이용한 3D 패키지의 방열 해석)

  • Suh, Il-Woong;Lee, Mi-Kyoung;Kim, Ju-Hyun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.43-51
    • /
    • 2014
  • In 3-dimensional (3D) integrated package, thermal management is one of the critical issues due to the high heat flux generated by stacked multi-functional chips in miniature packages. In this study, we used numerical simulation method to analyze the thermal behaviors, and investigated the thermal issues of 3D package using TSV (through-silicon-via) technology for mobile application. The 3D integrated package consists of up to 8 TSV memory chips and one logic chip with a interposer which has regularly embedded TSVs. Thermal performances and characteristics of glass and silicon interposers were compared. Thermal characteristics of logic and memory chips are also investigated. The effects of numbers of the stacked chip, size of the interposer and TSV via on the thermal behavior of 3D package were investigated. Numerical analysis of the junction temperature, thermal resistance, and heat flux for 3D TSV package was performed under normal operating and high performance operation conditions, respectively. Based on the simulation results, we proposed an effective integration scheme of the memory and logic chips to minimize the temperature rise of the package. The results will be useful of design optimization and provide a thermal design guideline for reliable and high performance 3D TSV package.

Optimization for Phosphorus Remove by Loess Ball Using Chromobacterium (Chromobacterium을 이용한 황토볼에 의한 인산 제거를 위한 최적화)

  • Choi Du Bok;Lee Choon-Boem;Cha Wol-Suk
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.584-589
    • /
    • 2005
  • To investigate factors affecting the removal of phosphorus from the practical wastewater in the F-STEP PROCESS using a loess ball and Chromobacterium WS 2-14, first, the loess ball size and calcining temperature, initial pH, initial phosphorus concentration, working temperature, and aeration were studied. A $2\~4mm$ of loess ball made at $960^{\circ}C$ of calcining temperature was the most suitable one for the removal of phosphorus. When the initial pH was increased from 3.0 to 6.0, the removal efficiency of phosphorus was increased. Especially, at 6.0 of initial pH, the maximum removal efficiency of phosphorus was $88.7\%$. The maximum removal efficiency of phosphorous was gained, 1.8mg/h when the initial concentration of phosphorous was 5.0mg/1. When the operating temperature was $30^{\circ}C$, the maximum removal efficiency of phosphorus was obtained. In the case of aeration, when it was increased from 0.5 to 5.0L/min, the removal efficiency of phosphorus was increased. On the other hand, above 7.0 L/min, the removal efficiency of phosphorus did not increased. Using the optimum operation conditions, pilot tests for the effective removal efficiency of phosphorus were carried out for 65 days. The average removal efficiency of phosphorus was $92.0\%$. The average removal efficiency of COD, BOD, and SS were 77.1, 74.2, and $86.4\%$, respectively. from the results, it can be concluded that F-STEP PROCESS using loess ball might be useful process for phosphorus removal.

Prediction of Distillation Column Temperature Using Machine Learning and Data Preprocessing (머신 러닝과 데이터 전처리를 활용한 증류탑 온도 예측)

  • Lee, Yechan;Choi, Yeongryeol;Cho, Hyungtae;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.191-199
    • /
    • 2021
  • A distillation column, which is a main facility of the chemical process, separates the desired product from a mixture by using the difference of boiling points. The distillation process requires the optimization and the prediction of operation because it consumes much energy. The target process of this study is difficult to operate efficiently because the composition of feed flow is not steady according to the supplier. To deal with this problem, we could develop a data-driven model to predict operating conditions. However, data preprocessing is essential to improve the predictive performance of the model because the raw data contains outlier and noise. In this study, after optimizing the predictive model based long-short term memory (LSTM) and Random forest (RF), we used a low-pass filter and one-class support vector machine for data preprocessing and compared predictive performance according to the method and range of the preprocessing. The performance of the predictive model and the effect of the preprocessing is compared by using R2 and RMSE. In the case of LSTM, R2 increased from 0.791 to 0.977 by 23.5%, and RMSE decreased from 0.132 to 0.029 by 78.0%. In the case of RF, R2 increased from 0.767 to 0.938 by 22.3%, and RMSE decreased from 0.140 to 0.050 by 64.3%.

A Numerical Study on Performance of a Heavy-Duty Diesel engine for Power Generation under Natural Gas-Diesel Dual Fuel Operation (발전용 대형 디젤 엔진의 천연가스-디젤혼소 운전 특성에 대한 수치해석 연구)

  • Cho, Jungkeun;Park, Sangjun;Song, Soonho;Hur, Kwang-Beom
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.29-36
    • /
    • 2015
  • This study is an 1-D numerical study prior to modification of diesel engine for power plants to natural gas/diesel dual fuel engine using GT-Power with 1.5MW diesel engine for power generation. Natural gas injector was installed to intake manifold for dual fuel engine model. Effects on engine performance and characteristics were investigated when dual fuel is used in unmodified diesel engine. The analysis was done under 5 conditions from 0% to 40% of mixing rate on 720RPM engine speed. As a result of research, the engine performance was decreased as increasing ratio of natural gas. Engine brake power was decreased by 18.4% under 40% mixing rate condition. To clarify the reason, effects of injection timing and period were evaluated with DOE method. Considering this result, optimization was done for these parameters. Also, comparison between performances of dual fueled engine and diesel engine was made after optimizing the timing of injection by DOE method. As a result, engine brake power was decreased by 8.55% under mixing rate 40% condition showing 12.5% improvement.

Process Capability Optimization of Ball Bonding Using Response Surface Analysis in Light Emitting Diode(LED) Wire Bonding (반응 표면 분석법을 이용한 Light Emitting Diode(LED) wire bonding 용 Ball Bonding 공정 최적화에 관한 연구)

  • Kim, Byung-Chan;Ha, Seok-Jae;Yang, Ji-Kyung;Lee, In-Cheol;Kang, Dong-Seong;Han, Bong-Seok;Han, Yu-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.175-182
    • /
    • 2017
  • In light emitting diode (LED) chip packaging, wire bonding is an important process that connects the LED chip on the lead frame pad with the Au wire and enables electrical operation for the next process. The wire bonding process is divided by two types: thermo compression bonding and ultrasonic bonding. Generally, the wire bonding process consists of three steps: 1st ball bonding that bonds the shape of the ball on the LED chip electrode, looping process that hangs the wire toward another connecting part with a loop shape, and 2nd stitch bonding that forms and bonds to another electrode. This study analyzed the factors affecting the LED die bonding processes to optimize the process capability that bonds a small Zener diode chip on the PLCC (plastic-leaded chip-carrier) LED package frame, and then applied response surface analysis. The design of experiment (DOE) was established considering the five factors, three levels, and four responses by analyzing the factors. As a result, the optimal conditions that meet all the response targets can be derived.

Decomposition Characteristics of Fungicides(Benomyl) using a Design of Experiment(DOE) in an E-beam Process and Acute Toxicity Assessment (전자빔 공정에서 실험계획법을 이용한 살균제 Benomyl의 제거특성 및 독성평가)

  • Yu, Seung-Ho;Cho, Il-Hyoung;Chang, Soon-Woong;Lee, Si-Jin;Chun, Suk-Young;Kim, Han-Lae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.955-960
    • /
    • 2008
  • We investigated and estimated at the characteristics of decomposition and mineralization of benomyl using a design of experiment(DOE) based on the general factorial design in an E-beam process, and also the main factors(variables) with benomyl concentration(X$_1$) and E-beam irradiation(X$_2$) which consisted of 5 levels in each factor was set up to estimate the prediction model and the optimization conditions. At frist, the benomyl in all treatment combinations except 17 and 18 trials was almost degraded and the difference in the decomposition of benomyl in the 3 blocks was not significant(p > 0.05, one-way ANOVA). However, the % of benomyl mineralization was 46%(block 1), 36.7%(block 2) and 22%(block 3) and showed the significant difference of the % that between each block(p < 0.05). The linear regression equations of benomyl mineralization in each block were also estimated as followed; block 1(Y$_1$ = 0.024X$_1$ + 34.1(R$^2$ = 0.929)), block 2(Y$_2$ = 0.026X$_2$ + 23.1(R$^2$ = 0.976)) and block 3(Y$_3$ = 0.034X$_3$ + 6.2(R$^2$ = 0.98)). The normality of benomyl mineralization obtained from Anderson-Darling test in all treatment conditions was satisfied(p > 0.05). The results of prediction model and optimization point using the canonical analysis in order to obtain the optimal operation conditions were Y = 39.96 - 9.36X$_1$ + 0.03X$_2$ - 10.67X$_1{^2}$ - 0.001X$_2{^2}$ + 0.011X$_1$X$_2$(R$^2$ = 96.3%, Adjusted R$^2$ = 94.8%) and 57.3% at 0.55 mg/L and 950 Gy, respectively. A Microtox test using V. fischeri showed that the toxicity, expressed as the inhibition(%), was reduced almost completely after an E-beam irradiation, whereas the inhibition(%) for 0.5 mg/L, 1 mg/L and 1.5 mg/L was 10.25%, 20.14% and 26.2% in the initial reactions in the absence of an E-beam illumination.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run (탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행)

  • Rhee, Hyop-Seung;Im, Hyuck-Soon;Manongi, Frank Andrew;Shin, Young-In;Song, Ho-Won;Jung, Woo-Kyun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2021
  • To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.

Optimization for Removal of Nitrogen Using Non-consumable Anode Electrodes (비소모성 Anode(산화전극)을 이용한 질소 제거 최적화)

  • Hyunsang, Kim;Younghee, Kim
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.309-315
    • /
    • 2022
  • Research was conducted to derive the optimal operation conditions and the optimal cathode for using a DSA electrode as an anode to minimize electrode consumption during the removal of nitrogen from wastewater by the electro-chemical method. Of the various electrodes tested as cathodes, brass was determined to be the optimal electrode. It had the highest NO3-N removal rate and the lowest concentration of residual NH3-N, a by-product when Cl is present in the solution. Investigating the effect of current density found that when the initial concentration of NO3-N was 50 mg L-1, the optimal current density was 15 mA cm-2. In addition, current densities above 15 mA cm-2 did not significantly affect the NO3-N removal rate. The effect of electrolytes on removing NO3-N and minimizing NH3-N was investigated by using Na2SO4 and NaCl as electrolytes and varying the reaction times. When Na2SO4 and NaCl are mixed at a ratio of 1.0 g L-1 to 0.5 g L-1 and reacted for 90 min at a current density of 15 mA cm-2 and an initial NO3-N concentration of 50 mg L-1, the removal rate of NO3-N was about 48% and there was no residual NH3-N. On the other hand, when using only 1.5 g L-1 of NaCl as an electrolyte, the removal rate of NO3-N was the highest at about 55% and there was no residual NH3-N.