• 제목/요약/키워드: Optimization of Computer Network

검색결과 498건 처리시간 0.024초

동적 네트워크 환경하의 분산 에이전트를 활용한 병렬 유전자 알고리즘 기법 (Applying Distributed Agents to Parallel Genetic Algorithm on Dynamic Network Environments)

  • 백진욱;방정원
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.119-125
    • /
    • 2006
  • 네트워크를 통하여 서로 연결된 컴퓨팅 자원들의 집합을 분산 시스템이라고 정의할 수 있다. 최적화 문제 영역에서 가장 중요한 해결 기법 중에 하나인 병렬 유전자 알고리즘은 분산 시스템을 기반으로 하고 있다. 인터넷과 이동 컴퓨팅과 같은 동적 네트워크 환경 하에서 네트워크의 상태는 가변적으로 변할 수 있어 기존의 병렬 유전자 알고리즘을 분산 시스템에서 최적화 문제를 해결하기 위하여 그대로 사용하기에는 비효율적이다. 본 논문에서는 동적 네트워크 환경 하에서 분산 에이전트를 사용하여 병렬 유전자 알고리즘을 효율적으로 사용할 수 있는 기법을 제시한다.

  • PDF

웨이블릿 신경 회로망을 이용한 이동 로봇의 경로 추종 제어 (Path Tracking Control Using a Wavelet Neural Network for Mobile Robots)

  • 오준섭;박진배;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2414-2416
    • /
    • 2003
  • In this raper, we present a Wavelet Neural Network(WNN) approach to the solution of the tracking problem for mobile robots that possess complexity, nonlinearity and uncertainty. The neural network is constructed by the wavelet orthogonal decomposition to form a wavelet neural network that can overcome the problems caused by local minima of optimization and various uncertainties. This network structure is helpful to determine the number of the hidden nodes and the initial value of weights with compact structure. In our control method, the control signals are directly obtained by minimizing the difference between the reference track and the pose of a mobile robot that is controlled through a wavelet neural network. The control process is a dynamic on-line process that uses the wavelet neural network trained by the gradient-descent method. Through computer simulations, we demonstrate the effectiveness and feasibility of the proposed control method.

  • PDF

송전제약과 등가운전시간을 고려한 장기 예방정비계획 최적화에 관한 연구 (Optimization of Long-term Generator Maintenance Scheduling considering Network Congestion and Equivalent Operating Hours)

  • 신한솔;김형태;이성우;김욱
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.305-314
    • /
    • 2017
  • Most of the existing researches on systemwide optimization of generator maintenance scheduling do not consider the equivalent operating hours(EOHs) mainly due to the difficulties of calculating the EOHs of the CCGTs in the large scale system. In order to estimate the EOHs not only the operating hours but also the number of start-up/shutdown during the planning period should be estimated, which requires the mathematical model to incorporate the economic dispatch model and unit commitment model. The model is inherently modelled as a large scale mixed-integer nonlinear programming problem and the computation time increases exponentially and intractable as the system size grows. To make the problem tractable, this paper proposes an EOH calculation based on demand grouping by K-means clustering algorithm. Network congestion is also considered in order to improve the accuracy of EOH calculation. This proposed method is applied to the actual Korean electricity market and compared to other existing methods.

Novel Two-Level Randomized Sector-based Routing to Maintain Source Location Privacy in WSN for IoT

  • Jainulabudeen, A.;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.285-291
    • /
    • 2022
  • WSN is the major component for information transfer in IoT environments. Source Location Privacy (SLP) has attracted attention in WSN environments. Effective SLP can avoid adversaries to backtrack and capture source nodes. This work presents a Two-Level Randomized Sector-based Routing (TLRSR) model to ensure SLP in wireless environments. Sector creation is the initial process, where the nodes in the network are grouped into defined sectors. The first level routing process identifies sector-based route to the destination node, which is performed by Ant Colony Optimization (ACO). The second level performs route extraction, which identifies the actual nodes for transmission. The route extraction is randomized and is performed using Simulated Annealing. This process is distributed between the nodes, hence ensures even charge depletion across the network. Randomized node selection process ensures SLP and also avoids depletion of certain specific nodes, resulting in increased network lifetime. Experiments and comparisons indicate faster route detection and optimal paths by the TLRSR model.

Enhancement of Return Routability Mechanism for Optimized-NEMO Using Correspondent Firewall

  • Hasan, Samer Sami;Hassan, Rosilah
    • ETRI Journal
    • /
    • 제35권1호
    • /
    • pp.41-50
    • /
    • 2013
  • Network Mobility (NEMO) handles mobility of multiple nodes in an aggregate manner as a mobile network. The standard NEMO suffers from a number of limitations, such as inefficient routing and increased handoff latency. Most previous studies attempting to solve such problems have imposed an extra signaling load and/or modified the functionalities of the main entities. In this paper, we propose a more secure and lightweight route optimization (RO) mechanism based on exploiting the firewall in performing the RO services on behalf of the correspondent nodes (CNs). The proposed mechanism provides secure communications by making an authorized decision about the mobile router (MR) home of address, MR care of address, and the complete mobile network prefixes underneath the MR. In addition, it reduces the total signaling required for NEMO handoffs, especially when the number of mobile network nodes and/or CNs is increased. Moreover, our proposed mechanism can be easily deployed without modifying the mobility protocol stack of CNs. A thorough analytical model and network simulator (Ns-2) are used for evaluating the performance of the proposed mechanism compared with NEMO basic support protocol and state-of-the-art RO schemes. Numerical and simulation results demonstrate that our proposed mechanism outperforms other RO schemes in terms of handoff latency and total signaling load on wired and wireless links.

경로 탐색 기법과 강화학습을 사용한 주먹 지르기동작 생성 기법 (Punching Motion Generation using Reinforcement Learning and Trajectory Search Method)

  • 박현준;최위동;장승호;홍정모
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.969-981
    • /
    • 2018
  • Recent advances in machine learning approaches such as deep neural network and reinforcement learning offer significant performance improvements in generating detailed and varied motions in physically simulated virtual environments. The optimization methods are highly attractive because it allows for less understanding of underlying physics or mechanisms even for high-dimensional subtle control problems. In this paper, we propose an efficient learning method for stochastic policy represented as deep neural networks so that agent can generate various energetic motions adaptively to the changes of tasks and states without losing interactivity and robustness. This strategy could be realized by our novel trajectory search method motivated by the trust region policy optimization method. Our value-based trajectory smoothing technique finds stably learnable trajectories without consulting neural network responses directly. This policy is set as a trust region of the artificial neural network, so that it can learn the desired motion quickly.

ROHMIP : 이동망에서 확장된 HMIP를 적용한 경로 최적학 (ROHMIP : Route Optimization Employing HMIP Extension for Mobile Networks)

  • 노경택;정수목
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권6호
    • /
    • pp.235-242
    • /
    • 2007
  • 이동망지원프로토콜은 이동 라우터와 연결된 이동 노드들에게 망의 이동을 투명하게 함으로써, 위치 갱신 신호의 양을 감소시키지만, 최적화되지 않은 경로선택과 다중 헤더를 요하는 문제점이 있다. 본 논문은 중첩된 이동망내에서 망의 이동에 따른 핸드오프의 지역화와 경로 최적화 그리고 특히 핸드오프 신호비용을 감소시키기 위하여 확장된 HMIP 기법을 적용한 경로 최적화 (ROHMIP) 기법을 제시한다. ROHMIP기법에서 이동 망의 이동시 이동 라우터와 연결된 모든 이동망노드들(MNNs)을 대신하여 이동 라우터가 MAP에게 단지 자신의 바인딩 정보 갱신만을 통고한다. 따라서 이동망노드는 통신 노드에 위치갱신을 통보하지 않고 경로 최적화를 유지한다. 성능평가를 통하여 본 논문에서 제안된 기법이 전송지연, 핸드오프로 인한 지연과 신호의 양을 감소시킴을 보였다.

  • PDF

An Effective Experimental Optimization Method for Wireless Power Transfer System Design Using Frequency Domain Measurement

  • Jeong, Sangyeong;Kim, Mina;Jung, Jee-Hoon;Kim, Jingook
    • Journal of electromagnetic engineering and science
    • /
    • 제17권4호
    • /
    • pp.208-220
    • /
    • 2017
  • This paper proposes an experimental optimization method for a wireless power transfer (WPT) system. The power transfer characteristics of a WPT system with arbitrary loads and various types of coupling and compensation networks can be extracted by frequency domain measurements. The various performance parameters of the WPT system, such as input real/imaginary/apparent power, power factor, efficiency, output power and voltage gain, can be accurately extracted in a frequency domain by a single passive measurement. Subsequently, the design parameters can be efficiently tuned by separating the overall design steps into two parts. The extracted performance parameters of the WPT system were validated with time-domain experiments.

Artificial Intelligence Application using Nutcracker Optimization Algorithm to Enhance Efficiency & Reliability of Power Systems via Optimal Setting and Sizing of Renewable Energy Sources as Distributed Generations in Radial Distribution Systems

  • Nawaf A. AlZahrani;Mohammad Hamza Awedh;Ali M. Rushdi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.31-44
    • /
    • 2024
  • People have been using more energy in the last years. Several research studies were conducted to develop sustainable energy sources that can produce clean energy to fulfill our energy requirements. Using renewable energy sources helps to decrease the harm to the environment caused by conventional power plants. Choosing the right location and capacity for DG-RESs can greatly impact the performance of Radial Distribution Systems. It is beneficial to have a good and stable electrical power supply with low energy waste and high effectiveness because it improves the performance and reliability of the system. This research investigates the ideal location and size for solar and wind power systems, which are popular methods for producing clean electricity. A new artificial intelligent algorithm called Nutcracker Optimization Algorithm (NOA) is used to find the best solution in two common electrical systems named IEEE 33 and 69 bus systems to examine the improvement in the efficiency & reliability of power system network by reducing power losses, making voltage deviation smaller, and improving voltage stability. Finally, the NOA method is compared with another method called PSO and developed Hybrid Algorithm (NOA+PSO) to validate the proposed algorithm effectiveness and enhancement of both efficiency and reliability aspects.

Self-Organized Hierarchy Tree Protocol for Energy-Efficiency in Wireless Sensor Networks

  • THALJAOUI, Adel
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.230-238
    • /
    • 2021
  • A sensor network is made up of many sensors deployed in different areas to be monitored. They communicate with each other through a wireless medium. The routing of collected data in the wireless network consumes most of the energy of the network. In the literature, several routing approaches have been proposed to conserve the energy at the sensor level and overcome the challenges inherent in its limitations. In this paper, we propose a new low-energy routing protocol for power grids sensors based on an unsupervised clustering approach. Our protocol equitably harnesses the energy of the selected cluster-head nodes and conserves the energy dissipated when routing the captured data at the Base Station (BS). The simulation results show that our protocol reduces the energy dissipation and prolongs the network lifetime.