• 제목/요약/키워드: Optimization of Computer Network

검색결과 498건 처리시간 0.04초

Optimal Power Allocation for Wireless Uplink Transmissions Using Successive Interference Cancellation

  • Wu, Liaoyuan;Wang, Yamei;Han, Jianghong;Chen, Wenqiang;Wang, Lusheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권5호
    • /
    • pp.2081-2101
    • /
    • 2016
  • Successive interference cancellation (SIC) is considered to be a promising technique to mitigate multi-user interference and achieve concurrent uplink transmissions, but the optimal power allocation (PA) issue for SIC users is not well addressed. In this article, we focus on the optimization of the PA ratio of users on an SIC channel and analytically obtain the optimal PA ratio with regard to the signal-to-interference-plus-noise ratio (SINR) threshold for successful demodulation and the sustainable demodulation error rate. Then, we design an efficient resource allocation (RA) scheme using the obtained optimal PA ratio. Finally, we compare the proposal with the near-optimum RA obtained by a simulated annealing search and the RA scheme with random PA. Simulation results show that our proposal achieves a performance close to the near-optimum and much higher performance than the random scheme in terms of total utility and Jain's fairness index. To demonstrate the applicability of our proposal, we also simulate the proposal in various network paradigms, including wireless local area network, body area network, and vehicular ad hoc network.

Cost Optimization in SIS Model of Worm Infection

  • Kim, Jong-Hyun;Radhakrishnan, Sridhar;Jang, Jong-Soo
    • ETRI Journal
    • /
    • 제28권5호
    • /
    • pp.692-695
    • /
    • 2006
  • Recently, there has been a constant barrage of worms over the Internet. Besides threatening network security, these worms create an enormous economic burden in terms of loss of productivity not only for the victim hosts, but also for other hosts, as these worms create unnecessary network traffic. Further, measures taken to filter these worms at the router level incur additional network delays because of the extra burden placed on the routers. To develop appropriate tools for thwarting the quick spread of worms, researchers are trying to understand the behavior of worm propagation with the aid of epidemiological models. In this study, we present an optimization model that takes into account infection and treatment costs. Using this model we can determine the level of treatment to be applied for a given rate of infection spread.

  • PDF

Hybrid Fuzzy Adaptive Wiener Filtering with Optimization for Intrusion Detection

  • Sujendran, Revathi;Arunachalam, Malathi
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.502-511
    • /
    • 2015
  • Intrusion detection plays a key role in detecting attacks over networks, and due to the increasing usage of Internet services, several security threats arise. Though an intrusion detection system (IDS) detects attacks efficiently, it also generates a large number of false alerts, which makes it difficult for a system administrator to identify attacks. This paper proposes automatic fuzzy rule generation combined with a Wiener filter to identify attacks. Further, to optimize the results, simplified swarm optimization is used. After training a large dataset, various fuzzy rules are generated automatically for testing, and a Wiener filter is used to filter out attacks that act as noisy data, which improves the accuracy of the detection. By combining automatic fuzzy rule generation with a Wiener filter, an IDS can handle intrusion detection more efficiently. Experimental results, which are based on collected live network data, are discussed and show that the proposed method provides a competitively high detection rate and a reduced false alarm rate in comparison with other existing machine learning techniques.

중첩된 NEMO에서의 경로 최적화를 위한 개선된 계층적 프리픽스 할당 프로토콜 (Improved Hierarchical Prefix Delegation Protocol for route optimization in nested NEMO)

  • 노경택
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.147-155
    • /
    • 2006
  • 네트워크 이동성 기본 솔루션(NEMO basic solution)의 비 경로 최적화의 문제점을 해결하기 위한 방안 중 하나로 HPD(Hierarchical Prefix Delegation) 프로토콜이 있다. 그러나 HPD는 미시적 이동성에 대한 지원을 하지 못하므로 이동네트워크노드(MNN)가 접촉점을 변경할 때마다 MIPv6 프로토콜에서와 같이 HA(Home Agent)와 통신노드(CNs)로 BU(Binding Update) 메시지를 보내야하는 문제점을 갖는다. 본 논문은 HPD에 HMIPv6 프로토콜 개념을 적용하여 nested NEMO에서의 미시적 이동성을 효과적으로 지원하는 알고리즘을 제안하였다. 이동네트워크노드는 MAP(Mobility Anchor Point) 영역 안에서 위치변경 시 가까운 곳에 위치한 MAP으로만 BU를 보냄으로써 핸드오프 과정에서 발생하는 서비스 중단이나 신호 부하를 감소시켜 HPD에서의 한계를 극복하였다.

  • PDF

A Novel Whale Optimized TGV-FCMS Segmentation with Modified LSTM Classification for Endometrium Cancer Prediction

  • T. Satya Kiranmai;P.V.Lakshmi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.53-64
    • /
    • 2023
  • Early detection of endometrial carcinoma in uterus is essential for effective treatment. Endometrial carcinoma is the worst kind of endometrium cancer among the others since it is considerably more likely to affect the additional parts of the body if not detected and treated early. Non-invasive medical computer vision, also known as medical image processing, is becoming increasingly essential in the clinical diagnosis of various diseases. Such techniques provide a tool for automatic image processing, allowing for an accurate and timely assessment of the lesion. One of the most difficult aspects of developing an effective automatic categorization system is the absence of huge datasets. Using image processing and deep learning, this article presented an artificial endometrium cancer diagnosis system. The processes in this study include gathering a dermoscopy images from the database, preprocessing, segmentation using hybrid Fuzzy C-Means (FCM) and optimizing the weights using the Whale Optimization Algorithm (WOA). The characteristics of the damaged endometrium cells are retrieved using the feature extraction approach after the Magnetic Resonance pictures have been segmented. The collected characteristics are classified using a deep learning-based methodology called Long Short-Term Memory (LSTM) and Bi-directional LSTM classifiers. After using the publicly accessible data set, suggested classifiers obtain an accuracy of 97% and segmentation accuracy of 93%.

Solving the Travelling Salesman Problem Using an Ant Colony System Algorithm

  • Zakir Hussain Ahmed;Majid Yousefikhoshbakht;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • 제23권2호
    • /
    • pp.55-64
    • /
    • 2023
  • The travelling salesman problem (TSP) is an important combinatorial optimization problem that is used in several engineering science branches and has drawn interest to several researchers and scientists. In this problem, a salesman from an arbitrary node, called the warehouse, starts moving and returns to the warehouse after visiting n clients, given that each client is visited only once. The objective in this problem is to find the route with the least cost to the salesman. In this study, a meta-based ant colony system algorithm (ACSA) is suggested to find solution to the TSP that does not use local pheromone update. This algorithm uses the global pheromone update and new heuristic information. Further, pheromone evaporation coefficients are used in search space of the problem as diversification. This modification allows the algorithm to escape local optimization points as much as possible. In addition, 3-opt local search is used as an intensification mechanism for more quality. The effectiveness of the suggested algorithm is assessed on a several standard problem instances. The results show the power of the suggested algorithm which could find quality solutions with a small gap, between obtained solution and optimal solution, of 1%. Additionally, the results in contrast with other algorithms show the appropriate quality of competitiveness of our proposed ACSA.

효율적인 워크로드 및 리소스 관리를 위한 게이트 순환 신경망 입자군집 최적화 (Particle Swarm Optimization in Gated Recurrent Unit Neural Network for Efficient Workload and Resource Management)

  • 파만 울라;시바니 자드하브;윤수경;나정은
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.45-49
    • /
    • 2022
  • The fourth industrial revolution, internet of things, and the expansion of online web services have increased an exponential growth and deployment in the number of cloud data centers (CDC). The cloud is emerging as new paradigm for delivering the Internet-based computing services. Due to the dynamic and non-linear workload and availability of the resources is a critical problem for efficient workload and resource management. In this paper, we propose the particle swarm optimization (PSO) based gated recurrent unit (GRU) neural network for efficient prediction the future value of the CPU and memory usage in the cloud data centers. We investigate the hyper-parameters of the GRU for better model to effectively predict the cloud resources. We use the Google Cluster traces to evaluate the aforementioned PSO-GRU prediction. The experimental shows the effectiveness of the proposed algorithm.

이미지의 피사계 심도를 빠르게 계산하기 위한 쿼드트리 기반의 합성곱 신경망 최적화 (Quadtree-based Convolutional Neural Network Optimization to Quickly Calculate the Depth of Field of an Image)

  • 김동희;김수균;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.257-260
    • /
    • 2021
  • 본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 쿼드트리(Quadtree) 기반의 합성곱 신경망을 통해 빠르게 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 적응형 트리인 쿼드트리를 기반으로 유의미한 영역만을 분류한다. 이 과정에서 손실 없이 온전하게 DoF영역을 추출하기 위한 필터링 과정을 거친다. 이러한 과정에서 얻어진 이미지 패치들은 전체 이미지에 비해 적은 영역으로 나타나며, 이 적은 개수의 패치들을 이용하여 네트워크 단계에서 사용할 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 네트워크 과정에서 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용한다. 본 논문에서 제안하는 쿼드트리 기반 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 결과적으로 학습에 필요한 데이터 영역이 줄어듦으로써 학습 시간과 메모리를 절약했으며, 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 더욱더 빠른 시간 내에 찾아낸다.

  • PDF

Multi Area Power Dispatch using Black Widow Optimization Algorithm

  • Girishkumar, G.;Ganesan, S.;Jayakumar, N.;Subramanian, S.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.113-130
    • /
    • 2022
  • Sophisticated automation-based electronics world, more electrical and electronic devices are being used by people from different regions across the universe. Different manufacturers and vendors develop and market a wide variety of power generation and utilization devices under different operating parameters and conditions. People use a variety of appliances which use electrical energy as power source. These appliances or gadgets utilize the generated energy in different ratios. Night time the utilization will be less when compared with day time utilization of power. In industrial areas especially mechanical industries or Heavy machinery usage regions power utilization will be a diverse at different time intervals and it vary dynamically. This always causes a fluctuation in the grid lines because of the random and intermittent use of these apparatus while the power generating apparatus is made to operate to provide a steady output. Hence it necessitates designing and developing a method to optimize the power generated and the power utilized. Lot of methodologies has been proposed in the recent years for effective optimization and economical load dispatch. One such technique based on intelligent and evolutionary based is Black Widow Optimization BWO. To enhance the optimization level BWO is hybridized. In this research BWO based optimize the load for multi area is proposed to optimize the cost function. A three type of system was compared for economic loads of 16, 40, and 120 units. In this research work, BWO is used to improve the convergence rate and is proven statistically best in comparison to other algorithms such as HSLSO, CGBABC, SFS, ISFS. Also, BWO algorithm best optimize the cost parameter so that dynamically the load and the cost can be controlled simultaneously and hence effectively the generated power is maximum utilized at different time intervals with different load capacity in different regions of utilization.

Joint Optimization of Mobile Charging and Data Gathering for Wireless Rechargeable Sensor Networks

  • Tian, Xianzhong;He, Jiacun;Chen, Yuzhe;Li, Yanjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3412-3432
    • /
    • 2019
  • Recent advances in radio frequency (RF) power transfer provide a promising technology to power sensor nodes. Adoption of mobile chargers to replenish the nodes' energy has recently attracted a lot of attention and the mobility assisted energy replenishment provides predictable and sustained power service. In this paper, we study the joint optimization of mobile charging and data gathering in sensor networks. A wireless multi-functional vehicle (WMV) is employed and periodically moves along specified trajectories, charge the sensors and gather the sensed data via one-hop communication. The objective of this paper is to maximize the uplink throughput by optimally allocating the time for the downlink wireless energy transfer by the WMV and the uplink transmissions of different sensors. We consider two scenarios where the WMV moves in a straight line and around a circle. By time discretization, the optimization problem is formulated as a 0-1 programming problem. We obtain the upper and lower bounds of the problem by converting the original 0-1 programming problem into a linear programming problem and then obtain the optimal solution by using branch and bound algorithm. We further prove that the network throughput is independent of the WMV's velocity under certain conditions. Performance of our proposed algorithm is evaluated through extensive simulations. The results validate the correctness of our proposed theorems and demonstrate that our algorithm outperforms two baseline algorithms in achieved throughput under different settings.