Since big-data text mining extracts many features and data, clustering and classification can result in high computational complexity and low reliability of the analysis results. In particular, a term document matrix obtained through text mining represents term-document features, but produces a sparse matrix. We designed an advanced genetic algorithm (GA) to extract features in text mining for detection model. Term frequency inverse document frequency (TF-IDF) is used to reflect the document-term relationships in feature extraction. Through a repetitive process, a predetermined number of features are selected. And, we used the sparsity score to improve the performance of detection model. If a spam mail data set has the high sparsity, detection model have low performance and is difficult to search the optimization detection model. In addition, we find a low sparsity model that have also high TF-IDF score by using s(F) where the numerator in fitness function. We also verified its performance by applying the proposed algorithm to text classification. As a result, we have found that our algorithm shows higher performance (speed and accuracy) in attack mail classification.
Seung-Hwan Hong;Kun-Ho Seo;Sung Ho Yoon;Soo-Ki Kim;Jungwhan Chon
Food Science of Animal Resources
/
v.43
no.1
/
pp.73-84
/
2023
Campylobacteriosis is a common cause of gastrointestinal disease. In this study, we suggest a general strategy of applying gold nanoparticles (AuNPs) in colorimetric biosensors to detect Campylobacter in chicken carcass. Polymerase chain reaction (PCR) was utilized for the amplification of the target genes, and the thiolated PCR products were collected. Following the blending of colloid AuNPs with PCR products, the thiol bound to the surface of AuNPs, forming AuNP-PCR products. The PCR products had a sufficient negative charge, which enabled AuNPs to maintain a dispersed formation under electrostatic repulsion. This platform presented a color change as AuNPs aggregate. It did not need additional time and optimization of pH for PCR amplicons to adhere to the AuNPs. The specificity of AuNPs of modified primer pairs for mapA from Campylobacter jejuni and ceuE from Campylobacter coli was activated perfectly (C. jejuni, p-value: 0.0085; C. coli, p-value: 0.0239) when compared to Salmonella Enteritidis and Escherichia coli as non-Campylobacter species. Likewise, C. jejuni was successfully detected from artificially contaminated chicken carcass samples. According to the sensitivity test, at least 15 ng/μL of Campylobacter PCR products or 1×103 CFU/mL of cells in the broth was needed for the detection using the optical method.
Journal of the Korean Institute of Intelligent Systems
/
v.5
no.4
/
pp.41-55
/
1995
In this paper, an optimal idenfication method using fuzzy-neural networks is proposed for modeling of
nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter
identification using the intelligent schemes together wlth optimization theory, linguistic fuzzy implication
rules, and neural networks(NNs) from input and output data of processes. Inference type for this
fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and
momentum coefficients of fuzzy-neural networks(FNNs) are tuned automatically using improved modified
complex method and modified learning algorithm. For the purpose of its application to nonlinear processes,
data for route choice of traffic problems and those for activateti sluge process of sewage treatment system
are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling.
The results show that the proposed method can produce the intelligence model with higher accuracy than
other works achieved previously.
In order for location information to deliver the collected information, it needs Sensor Nodes in an environment of Sensor Network. Each sensor sends data to a base station through the process of routing in a wireless sensor network environment. Therefore, Offering accurate location information is very important in a wireless sensor network environment. Most of existed routing methods save all the informations of nodes at the area of 1-hop. In order to save these informations, unnecessary wasted energy and traffics are generated. Routing Protocol proposed in this paper doesn't save node's location information, and doesn't exchange any periodic location information to reduce wasted energy. It includes transmission range of source nodes and nodes with the location information, however it doesn't include any nodes' routing near 1-hope distance.
The concrete gravity dam is one of the most important parts of the nation's infrastructure. Besides the benefits, the dam also has some potentially catastrophic disasters related to the life of citizens directly. During the lifetime of service, some degradations in a dam may occur as consequences of operating conditions, environmental aspects and deterioration in materials from natural causes, especially from dynamic loads. Cumulative Absolute Velocity (CAV) plays a key role to assess the operational condition of a structure under seismic hazard. In previous researches, CAV is normally used in Nuclear Power Plant (NPP) fields, but there are no particular criteria or studies that have been made on dam structure. This paper presents a method to calculate the limitation of CAV for the Bohyeonsan Dam in Korea, where the critical Peak Ground Acceleration (PGA) is estimated from twelve sets of selected earthquakes based on High Confidence of Low Probability of Failure (HCLPF). HCLPF point denotes 5% damage probability with 95% confidence level in the fragility curve, and the corresponding PGA expresses the crucial acceleration of this dam. For determining the status of the dam, a 2D finite element model is simulated by ABAQUS. At first, the dam's parameters are optimized by the Minitab tool using the method of Central Composite Design (CCD) for increasing model reliability. Then the Response Surface Methodology (RSM) is used for updating the model and the optimization is implemented from the selected model parameters. Finally, the recorded response of the concrete gravity dam is compared against the results obtained from solving the numerical model for identifying the physical condition of the structure.
Journal of the Computational Structural Engineering Institute of Korea
/
v.28
no.4
/
pp.401-408
/
2015
Conventional model updating methods for the structures have used global structural responses which are modal parameters obtained through vibration measurements. Although models updated by modal parameters estimate global structural responses accurately, they have difficulties to predict local responses for safety assesment of structural members. The safety of structural members in the structures has been evaluated through the stress estimation based on strain measurements. Thus, this study additionally uses measured strain responses of structural members to perform model updating besides modal parameters. In the proposed method, the objective functions are set to the differences of the global and local responses obtained from updated model and measurement and those functions are minimized by NSGA-II, one of the multi-objective optimization techniques. The strain responses predicted from updated model are used for safety assessment of the steel frame structures. The proposed method are verified by numerical and experimental studies through the impact hammer tests for a steel frame specimen.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.40
no.6
/
pp.98-105
/
2003
We propose a new technique of deinterleaving multiple radar pulse sequences by means of genetic algorithm for threat identification in electronic warfare(EW) system. The conventional approaches based on histogram or continuous wavelet transform are so deterministic that they are subject to failing in detection of individual signal characteristics under real EW signal environment that suffers frequent signal missing, noise, and counter-EW signal. The proposed algorithm utilizes the probabilistic optimization procedure of genetic algorithm. This method, a time-of-arrival(TOA) only strategy, constructs an initial chromosome set using the difference of TOA. To evaluate the fitness of each gene, the defined pulse phase is considered. Since it is rare to meet with a single radar at a moment in EW field of combat, multiple solutions are to be derived in the final stage. Therefore it is designed to terminate genetic process at the prematured generation followed by a chromosome grouping. Experimental results for simulated and real radar signals show the improved performance in estimating both the number of radar and the pulse repetition interval.
Paenibacillus larvae is a gram-positive, spore-forming bacterium that is etiological agent for american foulbrood disease (AFB), which is the most severe disease in honey bee. To detect P. larvae from infected honeybee-comb or larvae, polyclonal antibody against whole bacterium was produced from guineapig and its specificity was evaluated. After optimization of ELISA-based detection system using these antibodies, a number of different P. larvae strains were analysed. Polyclonal antibody against P. larvae ATCC 25747 showed high affinity to most strains of P. larvae including P. larvae. strain ATCC 9545 (type strain), ATCC 25747 and other korean strain, SJl5 but exhibited no cross-reaction with other bacterial species. Additionally, this type of ELISA system was used for the detection of AFB in field-application The results have shown that this antibody could be useful for the rapid identification and monitoring of P. larvae in honeybee-comb.
Deep learning in computer vision has made accelerated improvement over a short period but large-scale learning data and computing power are still essential that required time-consuming trial and error tasks are involved to derive an optimal network model. In this study, we propose a similar image classification performance improvement method based on CR (Confusion Rate) that considers only the characteristics of the data itself regardless of network optimization or data reinforcement. The proposed method is a technique that improves the performance of the deep learning model by calculating the CRs for images in a dataset with similar characteristics and reflecting it in the weight of the Loss Function. Also, the CR-based recognition method is advantageous for image identification with high similarity because it enables image recognition in consideration of similarity between classes. As a result of applying the proposed method to the Resnet18 model, it showed a performance improvement of 0.22% in HanDB and 3.38% in Animal-10N. The proposed method is expected to be the basis for artificial intelligence research using noisy labeled data accompanying large-scale learning data.
The Transactions of the Korea Information Processing Society
/
v.13
no.3
/
pp.130-139
/
2024
Artificial intelligence models are being used to detect facility anomalies using physics data such as vibration, current, and temperature for predictive maintenance in the manufacturing industry. Since the types of facility anomalies, such as facility defects and failures, anomaly detection methods using autoencoder-based unsupervised learning models have been mainly applied. Normal or abnormal facility conditions can be effectively classified using the reconstruction error of the autoencoder, but there is a limit to identifying facility anomalies specifically. When facility anomalies such as unbalance, misalignment, and looseness occur, the facility vibration frequency shows a pattern different from the normal state in a specific frequency range. This paper presents an N-segmentation anomaly detection method that performs anomaly detection by dividing the entire vibration frequency range into N regions. Experiments on nine kinds of anomaly data with different frequencies and amplitudes using vibration data from a compressor showed better performance when N-segmentation was applied. The proposed method helps materialize them after detecting facility anomalies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.