• Title/Summary/Keyword: Optimization Twist

Search Result 35, Processing Time 0.023 seconds

Aerodynamic Load Analysis at Hub and Drive Train for 1MW HAWT Blade (1MW급 풍력 터빈 블레이드의 허브 및 드라이브 트레인 공력 하중 해석)

  • Cho Bong-Hyun;Lee Chang-Su;Choi Sung-Ok;Ryu Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.25-32
    • /
    • 2005
  • The aerodynamic loads at the blade hub and the drive shaft for 1MW horizontal axis wind turbine are calculated numerically. The geometric shape of the blade such as chord length and twist angle can be obtained fran the aerodynamic optimization procedure. Various airfoil data, that is thick airfoils at hub side and thin airfoils at tip side, are distributed along the spanwise direction of the rotor blade. Under the wind data fulfilling design load cases based on the IEC61400-1, all of the shear forces, bending moments at the hub and the low speed shaft of the drive train are obtained by using the FAST code. It shows that shear forces and bending moments have a periodic. trend. These oscillating aerodynamic loads will lead to the fatigue problem at both of the hub and drive train From the load analysis the maximum shear forces and bending moments are generated when wind turbine generator system operates in the case of the extreme speed wind condition.

  • PDF

Development of an aerodynamic design program for a small wind turbine blade (소형풍력발전기용 블레이드 공력설계 프로그램 개발)

  • Yoon, Jin-Yong;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • An aerodynamic design tool was developed for small wind turbine blades based on the blade element momentum theory. The lift and drag coefficients of blades that are needed for aerodynamic blade design were obtained in real time from the Xfoil program developed at University of Illinois. While running, the developed tool automatically accesses the Xfoil program, runs it with proper aerodynamic and airfoil properties, and finally obtains lift and drag coefficients. The obtained aerodynamic coefficients are then used to find out optimal twist angles and chord lengths of the airfoils. The developed tool was used to design a wind turbine blade using low Reynolds number airfoils, SG6040 and SG6043 to have its maximum power coefficient at a specified tip speed ratio. The performance of the blade was verified by a commercial code well known for its prediction accuracies.

The Shape Optimization of washing Machine Shaft for High-Speed Rotation through Analysis of Static and Dynamic Characteristics (정특성 및 동특성 해석을 통한 고속세탁기 주축의 형상 최적화)

  • Kim, Eui-Soo;Lee, Jung-Min;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.132-139
    • /
    • 2008
  • To meet demand of big capacity and high speed rotation for washing machine, more stress from bending and twisting are complexly loaded onto the shaft supporting the horizontal drum, causing problems in fracture strength and fatigue life. Also, Vibration occurs due to the frequency of the rotating parts. But, shaft has various design factors such as diameter and distance between bearings according to configuration of shaft, the optimal values can't be easily determined. Using a design of experiment (DOE) based on the FEM (Finite Element Method), which has several advantages such as less computing, high accuracy performance and usefulness, this study was performed investigating the interaction effect between the various design factor as well as the main effect of the each design factor under bending, twist and vibration and proposed optimum design using center composition method among response surface derived from regression equation of simulation-based DOE.

Aerodynamic Performance Prediction of a Counter-rotating Wind Turbine System with Wake Effect (후류영향을 고려한 상반회전 풍력발전 시스템의 공력성능 예측에 관한 연구)

  • Dong, Kyung-Min;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.20-28
    • /
    • 2002
  • In this paper, the aerodynamic performance prediction of a 30kW counter-rotating (C/R) wind turbine system has been made by using the momentum theory as well as the two-dimensional quasi-steady strip theory with special care on the wake and the post-stall effects. In order to take into account the wake effects in the performance analysis, the wind tunnel test data obtained for a scaled blade are used. Both the axial and rotational inductions behind the auxiliary rotors are determined through the wake model. In addition, the optimum chord and twist distributions along the blades are obtained from the Glauert's optimum actuator disk model considering the Prandtl's tip loss effect. The performance results of the counter-rotating wind turbine system are compared with those of the conventional single rotor system and demonstrated the effectiveness of the counter-rotating wind turbine system.

A Study on the Performance Estimation and Shape Design of a Counter-Rotating Tidal Current Turbine (상반전 조류발전 터빈의 형상설계 및 성능예측에 관한 연구)

  • Kim, Mun-Oh;Kim, You-Taek;Lee, Young-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.586-592
    • /
    • 2014
  • This study looks at the design of a 100 kW blade geometry for a horizontal marine current turbine using the Blade Element Momentum Theory (BEMT) and by using (CFD), the power output, performance and characteristics of the the fluid flow over the blade is estimated. Three basic airfoils; FFA-W3-301, DU-93-W210 and NACA-63418, are used along the blade span and The distribution of the chord length and twist angles along the blade are obtained from the hydrodynamic optimization procedure. The power coefficient curve shows maximum peak at the rated tip speed ratio of 5.17, and the maximum power reaches about 101.82 kW at the power coefficient of 0.495.