• 제목/요약/키워드: Optimization Response surface method

검색결과 687건 처리시간 0.027초

반응면 기법을 이용한 발사체 선두부 다점 최적설계 (A Multi-Point Design Optimization of a Space Launcher Nose Shapes Using Response Surface Method)

  • 김상진;전용희;이재우;변영환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 추계 학술대회논문집
    • /
    • pp.46-53
    • /
    • 2000
  • To improve the performance at all design points, multi-point optimization method is implemented for the nose fairing shape design of space launcher. The response surface method is used to effectively reduce the huge computational loads during the optimization process. The drag is selected as the objective function, and the surface heat transfer characteristics, and the internal volume of the nose fairing ate considered as design constraints. Full Wavier-Stokes equations are selected as governing equations. Two points drag minimization, and two points drag / heat flux optimization were successfully performed and configurations which have good performance for the wide operation range were derived. By considering three design points, the space launcher shape which undergoes the least drag during whole flight mission was designed. For all the design cases, the constructed response surfaces show good confidence level with only 23 design points with the proper stretching of the design space.

  • PDF

반응표면방법론을 이용한 BLDC전동기의 코깅토크 저감에 관한 연구 (A study on Reduction of Cogging Torque for BLDC Motor Using Response Surface Methodology Optimization)

  • 김영균;이근호;홍정표
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권2호
    • /
    • pp.55-60
    • /
    • 2002
  • This paper presents an optimization procedure by using Response Surface Methodology(RSM) to determine design parameters for reducing cogging torque. RSM is achieved through using the experimental design method in combination with Finite Element Method and adapted to make analytical model for a complex problem considering a lot of interaction of these parameters. Sequential Quadratic Problem (SQP) method is used to solve the relsulting of constrained nonlinear optimization problem.

원심압축기의 공력소음 저감에 관한 설계연구 Part II : 저소음 최적설계 (A Design Study of Aerodynamic Noise Reduction In Centrifugal Compressor Part II . Low-noise Optimization Design)

  • 선효성;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.939-944
    • /
    • 2004
  • The numerical methods including the performance analysis and the noise prediction of the centrifugal compressor impeller are coupled with the optimization design skill, which consists of response surface method, statistical approach, and genetic algorithm. The flow-field Inside of a centrifugal compressor is obtained numerically by solving Wavier-Stokes equations. and then the propagating noise is estimated from the distributed surface pressure by using Ffowcs Williams-Hawkings formulation. The quadratic response surface model with D-optimal 3-level factorial experimental design points is constructed to optimize the impeller geometry for the advanced centrifugal compressor. The statistical analysis shows that the quadratic model exhibits a reasonable fitting quality resulting in the impeller blade design with high performance and low far-field noise level. The influences of selected design variables, objective functions, and constraints on the impeller performance and the impeller noise are also examined as a result of the optimization process.

시뮬레이션 최적화 기법과 절삭공정에의 응용 (Simulation Optimization Methods with Application to Machining Process)

  • 양병희
    • 한국시뮬레이션학회논문지
    • /
    • 제3권2호
    • /
    • pp.57-67
    • /
    • 1994
  • For many practical and industrial optimization problems where some or all of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computer simulation is one of the most effective means of studying such complex systems. In this paper, with discussion of simulation optimization techniques, a case study in machining process for application of simulation optimization is presented. Most of optimization techniques can be classified as single-or multiple-response techniques. The optimization of single-response category, these strategies are gradient based search methods, stochastic approximate method, response surface method, and heuristic search methods. In the multiple-response category, there are basically five distinct strategies for treating the responses and finding the optimum solution. These strategies are graphical method, direct search method, constrained optimization, unconstrained optimization, and goal programming methods. The choice of the procedure to employ in simulation optimization depends on the analyst and the problem to be solved.

  • PDF

2차원 고양력장치의 플랩 형상 및 위치 최적화 (Optimization of Flap Shape and Position for Two-dimensional High Lift Device)

  • 박영민;강형민;정진덕;이해창
    • 항공우주시스템공학회지
    • /
    • 제7권3호
    • /
    • pp.1-6
    • /
    • 2013
  • Numerical optimization of two dimensional high lift configuration was performed with flow solver and optimization method based on RSM(Response Surface Model). Navier-Stokes solver with Spalart-Allmaras turbulence model was selected for the simulation of highly complex and separated flows on the flap. For the simultaneous optimization of both flap shape and setting (gap/overlap), 10 design variables (eight variables for flap shape variation and two variables for flap setting) were chosen. In order to generate the response surface model, 128 experimental points were selected for 10 design variables. The objective function considering maximum lift coefficient, lift to drag ratio and lift coefficient at specific angle of attack was selected to reduce flow separation on the flap surface. The present method was applied to two dimensional fowler flap in landing configuration. After applying the present method, it was shown that the optimized high lift configuration had less flow separation on the flap surface and lift to drag ratio was suppressed over entire angle of attack range.

Optimization of a Wire-Spacer Fuel Assembly of Liquid Metal reactor

  • ;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.240-243
    • /
    • 2005
  • This study deals with the shape optimization of a wire spacer fuel assembly of Liquid Metal Reactors (LMRs). The Response Surface based optimization Method is used as an optimization technique with the Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer using Shear Stress Transport (SST) turbulence model as a turbulence closure. Two design variables namely, pitch to fuel rod diameter ratio and lead length to fuel rod diameter ratio are selected. The objective function is defined as a combination of the heat transfer rate and the inverse of friction loss with a weighting factor. Three level full-factorial method is used to determine the training points. In total, nine experiments have been performed numerically and the resulting datas have been analysed for optimization study. Also, a comparison has been made between the optimized surface and the reference one in this study.

  • PDF

반응표면법을 이용한 축류 압축기의 동익형상 최적설계 (Optimization of A Rotor Profile in An Axial Compressor Using Response Surface Method)

  • 송유준;이정민;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.16-20
    • /
    • 2016
  • Design optimization of a transonic compressor rotor(NASA rotor 37) was carried out using response surface method(RSM) which is one of the optimization methods. A numerical simulation was conducted using ANSYS CFX by solving three-dimensional Reynolds-averaged Navier Stokes(RANS) equations. Response surfaces that were based on the results of the design of experiment(DOE) techniques were used to find an optimal shape of blade which has the maximum aerodynamic performance. Two objective functions, viz., the adiabatic efficiency and the loss coefficient were selected with three design configurations to optimize the blade shape. As a result, the efficiency of the optimized blade is found to be increased.

다양한 회귀모델을 이용한 인공위성 플랫폼의 최적화 (Optimization of Satellite Upper Platform Using the Various Regression Models)

  • 전용성;박정선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1430-1435
    • /
    • 2003
  • Satellite upper platform is optimized by response surface method which has non-gradient, semi-glogal, discrete and fast convergency characteristics. Sampling points are extracted by design of experiments using Central Composite Method and Factorial Design. Also response surface is generated by the various regression functions. Structure analysis is execuated with regard for static and dynamic environment in launching stage. As a result response surface method is superior to other optimization method with respect to optimum value and cost of computation time. Also a confidence is varified in the various regression models.

  • PDF

최적화 방법에 따른 축류압축기의 효율평가 (Evaluation of Efficiency by Applying Different Optimization Method for Axial Compressor)

  • 장춘만;;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.543-544
    • /
    • 2006
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using three-dimensional Navier-Stokes analysis and three different surrogate models: i.e.., Response Surface Method(RSM), Kriging Method, and Radial Basis Function(RBF). Three design variables of blade sweep, lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor blade, the adiabatic efficiency is increased for the three different surrogate models. Detailed flow characteristics at the optimal blade shape obtained by different optimization method are drawn and discussed.

  • PDF

Application of Collaborative Optimization Using Genetic Algorithm and Response Surface Method to an Aircraft Wing Design

  • Jun Sangook;Jeon Yong-Hee;Rho Joohyun;Lee Dong-ho
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.133-146
    • /
    • 2006
  • Collaborative optimization (CO) is a multi-level decomposed methodology for a large-scale multidisciplinary design optimization (MDO). CO is known to have computational and organizational advantages. Its decomposed architecture removes a necessity of direct communication among disciplines, guaranteeing their autonomy. However, CO has several problems at convergence characteristics and computation time. In this study, such features are discussed and some suggestions are made to improve the performance of CO. Only for the system level optimization, genetic algorithm is used and gradient-based method is used for subspace optimizers. Moreover, response surface models are replaced as analyses in subspaces. In this manner, CO is applied to aero-structural design problems of the aircraft wing and its results are compared with the multidisciplinary feasible (MDF) method and the original CO. Through these results, it is verified that the suggested approach improves convergence characteristics and offers a proper solution.