• 제목/요약/키워드: Optimization Escape Algorithm

검색결과 19건 처리시간 0.037초

Analysis and Improvement of the Bacterial Foraging Optimization Algorithm

  • Li, Jun;Dang, Jianwu;Bu, Feng;Wang, Jiansheng
    • Journal of Computing Science and Engineering
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2014
  • The Bacterial Foraging Optimization Algorithm is a swarm intelligence optimization algorithm. This paper first analyzes the chemotaxis, as well as elimination and dispersal operation, based on the basic Bacterial Foraging Optimization Algorithm. The elimination and dispersal operation makes a bacterium which has found or nearly found an optimal position escape away from that position, which greatly affects the convergence speed of the algorithm. In order to avoid this escape, the sphere of action of the elimination and dispersal operation can be altered in accordance with the generations of evolution. Secondly, we put forward an algorithm of an adaptive adjustment of step length we called improved bacterial foraging optimization (IBFO) after making a detailed analysis of the impacts of the step length on the efficiency and accuracy of the algorithm, based on chemotaxis operation. The classic test functions show that the convergence speed and accuracy of the IBFO algorithm is much better than the original algorithm.

최적 비상대피로 유도를 위한 방향성 유도 알고리즘 구현 (The Embody of the Direction Escape Algorithm for Optimization Escape)

  • 이기연;김동욱;김동우;문현욱;길형준;김향곤
    • 조명전기설비학회논문지
    • /
    • 제23권10호
    • /
    • pp.115-120
    • /
    • 2009
  • 본 연구에서는 기존 소방시스템의 문제점을 개선한 인공지능형 방향성 유도등 제어 시스템에 적용하기 위해 필요한 최적 피난유도 알고리즘 설계기법을 제시하였다. 인공지능형 방향성 유도등 제어 시스템은 화재 감지기 및 수신반과 연동하여 화재 발생시 발화부 및 연기 이동에 대한 판단을 통하여 최적의 비상대피 유도라인을 계산하여 인명 피해를 최소화하는데 그 목적이 있다. 이러한 최적 피난유도 알고리즘 구현을 위하여 최단거리 계산 알고리즘인 FLOYD 알고리즘을 이용하였으며, 각 지역 감지기의 감지 신호에 대한 위험상태에 따라 지역 위험인자를 적용한 최단거리 산출기법으로 구현하였다.

오류 역전파 학습에서 확률적 가중치 교란에 의한 전역적 최적해의 탐색 (Searching a global optimum by stochastic perturbation in error back-propagation algorithm)

  • 김삼근;민창우;김명원
    • 전자공학회논문지C
    • /
    • 제35C권3호
    • /
    • pp.79-89
    • /
    • 1998
  • The Error Back-Propagation(EBP) algorithm is widely applied to train a multi-layer perceptron, which is a neural network model frequently used to solve complex problems such as pattern recognition, adaptive control, and global optimization. However, the EBP is basically a gradient descent method, which may get stuck in a local minimum, leading to failure in finding the globally optimal solution. Moreover, a multi-layer perceptron suffers from locking a systematic determination of the network structure appropriate for a given problem. It is usually the case to determine the number of hidden nodes by trial and error. In this paper, we propose a new algorithm to efficiently train a multi-layer perceptron. OUr algorithm uses stochastic perturbation in the weight space to effectively escape from local minima in multi-layer perceptron learning. Stochastic perturbation probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the EGP learning gets stuck to it. Addition of new hidden nodes also can be viewed asa special case of stochastic perturbation. Using stochastic perturbation we can solve the local minima problem and the network structure design in a unified way. The results of our experiments with several benchmark test problems including theparity problem, the two-spirals problem, andthe credit-screening data show that our algorithm is very efficient.

  • PDF

Improvement of dynamic encoding algorithm for searches (DEAS) using hopping unidirectional search (HUDS)

  • Choi, Seong-Chul;Kim, Nam-Gun;Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.324-329
    • /
    • 2005
  • Dynamic Encoding Algorithm for Searches (DEAS) which is known as a fast and reliable non-gradient optimization method, was proposed [1]. DEAS reaches local or global optimum with binary strings (or binary matrices for multi-dimensional problem) by iterating the two operations; bisectional search (BSS) and unidirectional search (UDS). BSS increases binary strings by one digit (i.e., 0 or 1), while UDS performs increment or decrement of binary strings in the BSS' result direction with no change of string length. Because the interval of UDS exponentially decreases with increment of bit string length (BSL), DEAS is difficult to escape from local optimum when DEAS falls into local optimum. Therefore, this paper proposes hopping UDS (HUDS) which performs UDS by hopping as many as BSL in the final point of UDS process. HUDS helps to escape from local optimum and enhances a probability searching global optimization. The excellent performance of HUDS will be validated through the well-known benchmark functions.

  • PDF

Solving the Travelling Salesman Problem Using an Ant Colony System Algorithm

  • Zakir Hussain Ahmed;Majid Yousefikhoshbakht;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • 제23권2호
    • /
    • pp.55-64
    • /
    • 2023
  • The travelling salesman problem (TSP) is an important combinatorial optimization problem that is used in several engineering science branches and has drawn interest to several researchers and scientists. In this problem, a salesman from an arbitrary node, called the warehouse, starts moving and returns to the warehouse after visiting n clients, given that each client is visited only once. The objective in this problem is to find the route with the least cost to the salesman. In this study, a meta-based ant colony system algorithm (ACSA) is suggested to find solution to the TSP that does not use local pheromone update. This algorithm uses the global pheromone update and new heuristic information. Further, pheromone evaporation coefficients are used in search space of the problem as diversification. This modification allows the algorithm to escape local optimization points as much as possible. In addition, 3-opt local search is used as an intensification mechanism for more quality. The effectiveness of the suggested algorithm is assessed on a several standard problem instances. The results show the power of the suggested algorithm which could find quality solutions with a small gap, between obtained solution and optimal solution, of 1%. Additionally, the results in contrast with other algorithms show the appropriate quality of competitiveness of our proposed ACSA.

희소 신호의 복원을 위한 확률적 배제 기반의 직교 정합 추구 알고리듬 (Probabilistic Exclusion Based Orthogonal Matching Pursuit Algorithm for Sparse Signal Reconstruction)

  • 김시현
    • 전기전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.339-345
    • /
    • 2013
  • 본 논문에서는 희소한 신호의 압축센싱를 위해 확률적 배제에 기반한 직교정합추구 (PEOMP) 신호 복원 알고리듬을 제안하였다. CoSaMP, gOMP, BAOMP 등의 알고리듬들은 매 반복 단계에서 새로운 atom들을 support set에 추가할 뿐만 아니라 부적절하다고 판단되어지는 atom들은 삭제하기 때문에 우수한 신호 복원 성능을 보인다. 그러나 반복 과정 중에 support set의 구성이 국소 최저점에서 벗어나지 못하여 신호 복원에 실패하는 경우가 발생하는 단점을 가지고 있다. 제안된 알고리듬은 매 반복 단계에서 확률적으로 임의의 atom을 배제하여 support set이 국소 최저점에 빠져 있는 경우 그곳에서 탈출하는데 도움을 준다. 모의실험을 통해 PEOMP가 기존의 OMP 기반의 알고리듬들과 $l_1$ 최적화 방법보다 신호 복원 능력 관점에서 우수한 성능을 보임을 확인하였다.

배전 계토의 손실 최소 재구성을 위한 시뮬레이티드 어닐링의 구현 (Implementation of Simulated Annealing for Distribution System Loss Minimum Reconfiguration)

  • 전영재;최승규;김재철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.371-378
    • /
    • 1999
  • This paper presents an efficient algorithm for loss reduction of distribution system by automatic sectionalizing switch operation in large scale distribution systems of radial type. Simulated Annealing algorithm among optimization techniques can avoid escape from local minima by accepting improvements in cost, but the use of this algorithm is also responsible for an excessive computation time requirement. To overcome this major limitation of Simulated Annealing algorithm, we may use advanced Simulated Annealing algorithm. All constaints are divided into two constraint group by using perturbation mechanism and penalty factor, so all trail solutions are feasible. The polynomial-time cooling schedule is used which is based on the statistics calculation during the search. This approaches results in saving CPU time. Numerical examples demonstrate the validity and effectiveness of the proposed methodology.

  • PDF

Derivative Evaluation and Conditional Random Selection for Accelerating Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.21-28
    • /
    • 2005
  • This paper proposes a new method for accelerating the search speed of genetic algorithms by taking derivative evaluation and conditional random selection into account in their evolution process. Derivative evaluation makes genetic algorithms focus on the individuals whose fitness is rapidly increased. This accelerates the search speed of genetic algorithms by enhancing exploitation like steepest descent methods but also increases the possibility of a premature convergence that means most individuals after a few generations approach to local optima. On the other hand, derivative evaluation under a premature convergence helps genetic algorithms escape the local optima by enhancing exploration. If GAs fall into a premature convergence, random selection is used in order to help escaping local optimum, but its effects are not large. We experimented our method with one combinatorial problem and five complex function optimization problems. Experimental results showed that our method was superior to the simple genetic algorithm especially when the search space is large.

여유 자유도를 갖는 Robot Manipulator 최적 충돌 회피 경로 계획에 관한 연구 (Optimal Collision-Free Path Planning of Redundant Robotic Manipulators)

  • 장민근;기창두;기석호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.743-747
    • /
    • 1996
  • A Potential Field Method is applied to the proposed algorithm for the planning of collision-free paths of redundant manipulators. The planning is carried out on the base of kinematic configuration. To make repulsive potentials, sources are distributed on the boundaries of obstacles. To escape from local minimum of the main potential and to attack other difficulties of the planning, various potentials are defined simultaneously, Inverse Kinematics Problems of the redundant manipulators are solved by unconstrained optimization method. Computer simulation result of the path planning is presented.

  • PDF

Health monitoring sensor placement optimization for Canton Tower using virus monkey algorithm

  • Yi, Ting-Hua;Li, Hong-Nan;Zhang, Xu-Dong
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1373-1392
    • /
    • 2015
  • Placing sensors at appropriate locations is an important task in the design of an efficient structural health monitoring (SHM) system for a large-scale civil structure. In this paper, a hybrid optimization algorithm called virus monkey algorithm (VMA) based on the virus theory of evolution is proposed to seek the optimal placement of sensors. Firstly, the dual-structure coding method is adopted instead of binary coding method to code the solution. Then, the VMA is designed to incorporate two populations, a monkey population and a virus population, enabling the horizontal propagation between the monkey and virus individuals and the vertical inheritance of monkey's position information from the previous to following position. Correspondingly, the monkey population in this paper is divided into the superior and inferior monkey populations, and the virus population is divided into the serious and slight virus populations. The serious virus is used to infect the inferior monkey to make it escape from the local optima, while the slight virus is adopted to infect the superior monkey to let it find a better result in the nearby area. This kind of novel virus infection operator enables the coevolution of monkey and virus populations. Finally, the effectiveness of the proposed VMA is demonstrated by designing the sensor network of the Canton Tower, the tallest TV Tower in China. Results show that innovations in the VMA proposed in this paper can improve the convergence of algorithm compared with the original monkey algorithm (MA).